Case 3:17-cv-04006 Document 1 Filed 07/17/17 Page 1 of 307

1	Rio S. Pierce, CBA No. 298297				
2	HAGENS BERMAN SOBOL SHAPIRO LLP 715 Hearst Avenue, Suite 202				
3	Berkeley, CA 94710 Telephone: (510) 725-3000				
4	Facsimile: (510) 725-3001 riop@hbsslaw.com				
5					
	Steve W. Berman (<i>pro hac vice</i> pending) Mark S. Carlson (<i>pro hac vice</i> pending) HAGENS BERMAN SOBOL SHAPIRO LLP 1918 Eighth Avenue, Suite 3300				
6					
7	Seattle, WA 98101 Telephone: (206) 623-7292				
8	Facsimile: (206) 623-0594 steve@hbsslaw.com				
9	markc@hbsslaw.com				
10	Attorneys for Plaintiff Rearden LLC and Rearden Mova LLC				
11					
12	UNITED STATES DISTRICT COURT				
13	NORTHERN DISTRICT OF CALIFORNIA				
14	SAN FRANCISO	SAN FRANCISCO DIVISION			
15	REARDEN LLC, REARDEN MOVA LLC, California limited liability companies,	No			
16 17	Plaintiffs,	COMPLAINT FOR COPYRIGHT PATENT, AND TRADEMARK			
18	v.	INFRINGEMENT			
19	THE WALT DISNEY COMPANY, a Delaware				
20	corporation, WALT DISNEY MOTION PICTURES GROUP, INC., a California				
21	corporation, BUENA VISTA HOME ENTERTAINMENT, INC. a California	DEMAND FOR JURY TRIAL			
22	corporation, MARVEL STUDIOS, LLC, a Delaware limited liability company,	DEMAND FOR JUNE TRIAL			
	MANDEVILLE FILMS, INC., a California corporation,				
23	Defendants.				
24					
25					
26					
27					
28					
	COMPLAINT Case No.:				

TABLE OF CONTENTS 1 Page 2 I. THE PARTIES4 3 II. JURISDICTION AND VENUE......4 4 Ш. IV. FACTUAL ALLEGATIONS......5 5 6 A. The MOVA Contour systems and methods....... 7 B. C. Rearden's use of the MOVA Contour system and methods in fifteen major motion 8 9 Transfer of the MOVA Assets to OnLive, Inc., OL2, Inc., and Rearden Mova37 D. 10 E. 11 F. Defendants' unauthorized use of the MOVA Assets and Technologies40 12 1. Guardians of the Galaxy41 13 2. Avengers: Age of Ultron......44 14 3. Beauty and the Beast46 15 FIRST CAUSE OF ACTION: COPYRIGHT INFRINGEMENT (DEFENDANTS DISNEY 16 COMPANY, DISNEY MPG, AND MARVEL).....51 17 SECOND CAUSE OF ACTION: COPYRIGHT INFRINGEMENT (DEFENDANTS DISNEY COMPANY, DISNEY MPG, BUENA VISTA, AND MANDEVILLE).....56 18 THIRD CAUSE OF ACTION: INFRINGEMENT OF U.S. PATENT NO. 7.605.861 (DEFENDANT 19 DISNEY MPG)60 FOURTH CAUSE OF ACTION: INFRINGEMENT OF U.S. PATENT 7.567.293 (DEFENDANT 20 DISNEY MPG)64 21 FIFTH CAUSE OF ACTION: INFRINGEMENT OF U.S. PATENT NO. 7,548,272 (DEFENDANT 22 DISNEY MPG)67 SIXTH CAUSE OF ACTION: INFRINGEMENT OF U.S. PATENT NO. 8,659,668 (DEFENDANT 23 DISNEY MPG)71 24 SEVENTH CAUSE OF ACTION: INFRINGEMENT OF U.S. PATENT NO. 8,207,963 (DEFENDANT DISNEY MPG).....74 25 26 EIGHTH CAUSE OF ACTION: TRADEMARK INFRINGEMENT (DEFENDANTS DISNEY COMPANY, DISNEY MPG AND BUENA VISTA)78 27 PRAYER FOR RELIEF81 28 **COMPLAINT** Case No.: i

1	DEMAND FOR JURY TRIAL	33
2		
3		
4		
5		
6		
7		
8		
9		
10		
11		
12		
13		
14		
15		
16		
17		
18		
19		
20		
21		
22		
23		
24		
25		
26		
27		
28		
	COMPLAINT	

Case No.:

1	Plaintiffs Rearden LLC and Rearden Mova LLC (collectively, "Plaintiffs"), through their
2	attorneys and for their claims against defendants The Walt Disney Company, Walt Disney Motion
3	Pictures Group, Inc., Buena Vista Home Entertainment, Inc., Marvel Studios, LLC (collectively,
4	"Disney"), and Mandeville Films, Inc. (collectively, "Defendants"), allege as follows.
5	I. INTRODUCTION
6 7	"There have been a lot of great CG [computer graphics] performances, but [the Beast] was a romantic hero, someone who was at the emotional center of the movie. I always said that we could get
8	everything else in this movie right, but if we didn't get a Beast that people believed in then [the movie] wouldn't work." - Bill Condon, Director, <i>Beauty and the Beast</i>
9	1. Disney's <i>Beauty and the Beast</i> opened on March 17, 2017 to an astonishing \$170
10	million in North America and \$350 million globally, establishing numerous new box-office records
11	in the process. It became the top film opening of all time for a PG-rated film, both domestically and
12	internationally. It was the seventh largest opening for a film of any rating in North America. And it
13	is now the highest grossing PG-rated film of all time, earning over \$500 million domestically and
14	\$1.25 billion worldwide. <i>Beauty and the Beast</i> is the tenth highest grossing movie of any rating of
15	all time. ²
16	2. The film's romantic hero, the Beast, was a CG (computer graphics) character played
17	by actor Dan Stevens, with every human subtlety of his facial performance carried through to the
18	animal-like CG face of the Beast by a unique Oscar-winning visual effects ("VFX") technology
19	called MOVA Contour Reality Capture. Stevens described how MOVA Contour was used:
20	The facial capture [for the Beast] was done separately using a
21	technology called "MOVA." So, every ten days, two weeks, I'd go into a booth and spray my face with UV paint and 27 little cameras would
22	capture the facial expressions of all the scenes we had done on previous daysthey would take that information and morph it onto the Beast, his face
23	and co-star Emma Watson (Belle) lauded MOVA Contour, saying:
24	I'm so pleased that we did it the way we did it because when you see
25	Beast on screen there is something so human about him [MOVA
26	¹ Truitt Brian "Watch the crazy way 'Beauty and the Beast' turned Dan Stevens into a monster"

COMPLAINT Case No.:

27

¹ Truitt, Brian, "Watch the crazy way 'Beauty and the Beast' turned Dan Stevens into a monster", USA Today, May 29, 2017. https://www.usatoday.com/story/life/entertainthis/2017/05/29/exclusive-video-how-dan-stevens-was-transformed-in-beauty-and-the-beast/102281138/.

² <u>http://www.boxofficemojo.com/movies/?id=beautyandthebeast2017.htm.</u>

Case 3:17-cv-04006 Document 1 Filed 07/17/17 Page 5 of 307

1 Contour] really captures the subtlety of Dan's facial expression and the performance that he gives...I don't think the world has seen anything 2 like it before. I think it's really unique to our film. 3 And Director Bill Condon went further, expressly crediting the success of the CG Beast to the unique 4 capabilities of MOVA Contour and attributing the film's success in its entirety to MOVA Contour: 5 "[The Beast] was at the emotional center of the movie, who was the romantic hero of the movie, who was going to be a CG character...and 6 it was this new process [MOVA Contour] which—you know usually its dots like this [Condon points to his face] and then animators fill in 7 the dots—but actually captured every pore of Dan [Stevens]'s skin and that's why so much of him, this great performance, comes through..." 8 This view was affirmed by *Beauty and the Beast's* editor, Virginia Katz: 9 "...the main concern, for me and I think for all [working on the movie], was how that the Beast was going to be visualized. I mean, if 10 the Beast didn't work, then the film wouldn't work." 11 3. 12 13

3. But in all of the film industry and media accolades about the record-breaking success of *Beauty and the Beast*, and the acclaimed cutting-edge digital MOVA Contour technology that made the film's success possible, nowhere is it mentioned that the patented and copyright-protected MOVA Contour technology was stolen from its inventor and developer, Rearden LLC, and its owner Rearden Mova LLC. Nowhere is it mentioned that although Disney had previously contracted with Rearden LLC and its controlled entities on *four previous major motion pictures* to use MOVA Contour and knew of a Rearden Demand Letter⁶ to one of the thieves demanding immediate return of the stolen MOVA Contour system, Disney nonetheless contracted with the thieves to use the stolen MOVA Contour system. And, nowhere is it mentioned that *after* Rearden and Rearden Mova were in widely-reported litigation against the thieves, Disney secretly used MOVA Contour in *Beauty and the Beast* throughout the litigation, and then prior to the film's release, flaunted its unauthorized use of MOVA Contour as a promotional vehicle for the film. Throughout this entire time, Disney never

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

³ Paris Press Conference, Feb 17, 2017. https://www.youtube.com/watch?v=R9mKV_gklgw&feature=youtu.be&t=12m14s and https://youtu.be/PDmNbXMTxd0?t=12m5s.

⁴ Id.

⁵ Romanello, Linda, Post Magazine, March 1, 2017. http://www.postmagazine.com/Publications/Post-Magazine/2017/March-1-2017/Cover-Story-Disneys-i-Beauty-and-the-Beast-I-.aspx.

⁶ Shenzhenshi, et al. v. Rearden, et al., NDCA Case No. 15-797, Dkt: 383, at 169.

bothered to contact its longtime MOVA Contour service provider Rearden LLC to ask any questions or to verify Disney's authorization to use the MOVA Contour system, methods, trade secrets, or trademarks that Disney knew Rearden owned.

4. And this was not the first time. Disney contracted with the same thieves previously (after receiving the Rearden Demand Letter) to use MOVA Contour in at least one other film, *Guardians of the Galaxy*, which was also highly successful. Disney falsely designated the thieves as the owners of MOVA's facial capture technologies, resulting in widespread industry confusion to the point where Disney's use of MOVA Contour in *Guardians of the Galaxy*—despite being wholly unauthorized—was the *only* movie cited by the Academy of Motion Picture Arts and Sciences when awarding "MOVA [Contour] Facial Performance Capture system" a Sci-Tech Oscar:

"MOVA uses phosphorescent makeup applied with a sponge, strobing fluorescent lights, and an array of 32 cameras. Instead of capturing around a hundred points on the face [using conventional marker-based facial capture] MOVA creates an animated mesh with thousands of points. This offers digital recreations with all the subtle and dynamic motions performed by the actor. You would have seen this most recently by Josh Brolin playing Thanos in the blockbuster *Guardians of the Galaxy.*"

And Disney contracted with the same thieves again to use the MOVA Contour technology for the same Thanos character in a sequence in the closing credits of *Avengers: Age of Ultron* used by defendants Disney MPG and Marvel to promote the next *Avengers* film.

5. Disney used the stolen MOVA Contour systems and methods, made derivative works, and reproduced, distributed, performed, and displayed at least *Guardians of the Galaxy*, *Avengers:*Age of Ultron, and Beauty and the Beast, in knowing or willfully blind violation of Rearden Mova LLC's intellectual property rights. This case seeks all just and equitable copyright, patent and trademark remedies on behalf of the inventors and owners of the MOVA Contour systems and methods, plaintiffs Rearden LLC and Rearden Mova LLC.

⁷ https://youtu.be/F90iv9I-Sr4 and http://oscar.go.com/news/oscar-news/150209-ampas-sci-tech-awards-2015-winners (emphasis added).

Case No.:

II. THE PARTIES

- 6. Plaintiff Rearden LLC ("Rearden") is a California limited liability company having its principal place of business at 355 Bryant Street, Suite 110, San Francisco, California 94107.
- 7. Plaintiff Rearden Mova LLC ("Rearden Mova") is a California limited liability company having its principal place of business at 355 Bryant Street, Suite 110, San Francisco, California 94107. Rearden MOVA is wholly owned by Rearden.
- 8. Defendant The Walt Disney Company ("Disney Company") is a Delaware corporation having its principal place of business at 500 S. Buena Vista Street, Burbank, California 91521.
- 9. Defendant Walt Disney Motion Pictures Group, Inc. ("Disney MPG") is a California corporation having its principal place of business at 500 S. Buena Vista Street, Burbank, California 91521. Disney MPG is a wholly-owned subsidiary of defendant Disney Company.
- 10. Defendant Buena Vista Home Entertainment, Inc., d/b/a Walt Disney Studios Home Entertainment ("Buena Vista"), is a California corporation having its principal place of business at 500 S. Buena Vista Street, Burbank, California 91521. Buena Vista is a wholly-owned subsidiary of defendant Disney Company.
- 11. Defendant Marvel Studios, LLC ("Marvel") is a Delaware limited liability company having a principal place of business at 500 S. Buena Vista Street, Burbank, California, 91521.

 Marvel is a division of Disney MPG.
- 12. Defendant Mandeville Films, Inc. ("Mandeville") is a California corporation having its principal place of business at 3000 West Olympic Boulevard., Building 5, Santa Monica, California 90404.

III. JURISDICTION AND VENUE

- 13. This Court has subject matter jurisdiction under 28 U.S.C. § 1331, federal question jurisdiction, and § 1338, patent, trademark and copyright jurisdiction.
- 14. This Court has personal jurisdiction over all defendants. It has general personal jurisdiction over Disney MPG, Buena Vista, and Mandeville because they are corporations organized and existing under the laws of the State of California. It has general personal jurisdiction over COMPLAINT

Disney Company and Marvel because their principal places of business are in the State of California and they have the capacity to sue and be sued in the State of California. And this Court has specific personal jurisdiction over all defendants because they have committed acts in the State of California that give rise to all acts of infringement asserted herein.

- U.S.C. § 1400(a) and 1391 (b), (c) and (d). Disney MPG and Buena Vista reproduced and distributed, and authorized the performance and display of, *Guardians of the Galaxy*, *Avengers: Age of Ultron*, and *Beauty and the Beast* throughout this judicial district, and created derivative works without authorization in this judicial district. All other defendants are residents of the State of California and subject to personal jurisdiction in this judicial district.
- 16. Venue is proper for plaintiffs' patent infringement claims against defendant Disney MPG under 28 U.S.C. §§ 1400(b) because defendant Disney MPG is a California corporation, and has sufficient minimum contacts to be subject to personal jurisdiction in this judicial district if this judicial district were a separate state.

IV. FACTUAL ALLEGATIONS

A. The MOVA Contour systems and methods

- 17. The technology at the core of this case includes MOVA Contour Reality Capture ("Contour" or "MOVA Contour") technology that was conceived and developed by plaintiff Rearden and is currently owned by Rearden MOVA, which is wholly owned by Rearden.
- 18. MOVA Contour (http://www.rearden.com/mova.html) is one of many technologies incubated and offered by Rearden (www.rearden.com), a San Francisco Bay Area company founded in 1999 by Steve Perlman as an incubator for fundamental technology, creative works, and their interplay.
- 19. MOVA Contour is the fourth performance motion capture technology that Rearden has used in film and video game production since its founding 18 years ago. Facial performance motion capture, as both a technology and a tool for motion picture and video game production, falls squarely within the focus of Rearden's business. Rearden practices all of its technologies and inventions, either directly or indirectly by spinning off Rearden entities to use its technologies and COMPLAINT Case No.:

Case 3:17-cv-04006 Document 1 Filed 07/17/17 Page 9 of 307

inventions. Despite holding a global portfolio of hundreds of its own patents, Rearden has never		
been in the business of licensing third parties to practice its technologies and inventions, and it has		
never licensed nor sought to license any of its technologies, inventions, patents, copyrights, or		
trademarks. Rearden's intellectual property portfolio exists only to protect Rearden's product and		
services offerings, and neither Rearden nor any of its controlled entities has ever previously sued any		
other person or entity for patent or copyright infringement.		
20. Mr. Perlman previously worked as Principal Scientist at Apple where he developed,		

20. Mr. Perlman previously worked as Principal Scientist at Apple where he developed, among many other technologies, the multimedia underpinnings of the color Macintosh as well as QuickTime. He left Apple for two startups that later went public, and designed and co-founded WebTV, which was later acquired by Microsoft. Microsoft named Perlman President of a new Silicon Valley division focused on television products, which ultimately developed Microsoft's cable, satellite, IPTV and Xbox 360 systems. Perlman left Microsoft in 1999 and self-funded a technology incubator and visual effects production studio in San Francisco called Rearden, Inc. (now Rearden LLC). Rearden focused largely on developing fundamental media-related technologies whose development times (e.g. 5 to 15 years) are beyond the horizon of venture capital and corporate research and development. Perlman has operated Rearden continuously through to this day. He is a prolific inventor. Perlman is a named inventor on over 500 patents worldwide, and among his many innovations are the following:

- The underlying technology for QuickTime (the video streaming technology for iPhone, iPad, iPod and Mac and much of the multimedia technology for Apple);
- The underlying technology for many of Microsoft's video products;
- OnLive cloud gaming technology;
- MOVA Contour facial capture technology;
- Artemis pCell wireless technology; and
- A wide range of other technologies in other fields, including medical and national defense life-saving technologies, often in cooperation with the U.S. government and U.S. agencies, sometimes not publicly disclosed.

	1	
	2	
	3	
	4	
	5	
	6	
	7	
	8	
	9	
1	0	
l	1	
1	2	
1	3	
l	4	
l	5	
l	6	
l	7	
l	8	
l	9	
2	0	
2	1	
2	2	
2	3	
2	4	
2	5	
2	6	
2	7	
,	0	

21. A major technology focus of Rearden from its 1999 founding to this day is "performance motion capture," a production technology typically used to create a 3D animated character in a movie or a video game that moves exactly like a human performer. In 2000, Rearden began offering motion capture services for movies and video games (through wholly-owned subsidiaries Rearden Studios and then MOVA LLC) using existing commercial "marker-based" motion capture systems that could capture and track body ("skeletal") motion, but there was no known technology at that time that could capture and track the subtleties of human facial motion in a realistic, life-like manner, despite an urgent need:

"The state of the art [before Contour] was ... marker-based motion capture...we looked at a number of other films at the time that were using facial marker tracking...as you can see, it gives you a pretty crappy performance... What we realized was that what we needed was the information that was going on between the markers. We needed the subtleties of the skin. We needed to see skin moving over muscle moving over bone. We needed creases and dimples and wrinkles..." ⁸

Rearden set out to invent and perfect a photorealistic facial motion capture and tracking system.

22. Over the next five years, Rearden's technical team tried dozens of different approaches to solve the problem, ultimately leading to the conception and perfection of a solution to the long-felt need—a technology that precisely captures and tracks the 3D shape and motion of a human face to sub-millimeter precision, producing photorealistic results. Rearden branded the technology Contour Reality Capture, and offered it as a service. This innovative technology was recognized in the motion picture industry as revolutionary:

"Contour's promise is enormous," [Director David] Fincher said, "The notion that the human face in all its subtleties could be mapped in real time and such density of surface information opens up so many possibilities for both two- and three-dimensional image makers and story-tellers."

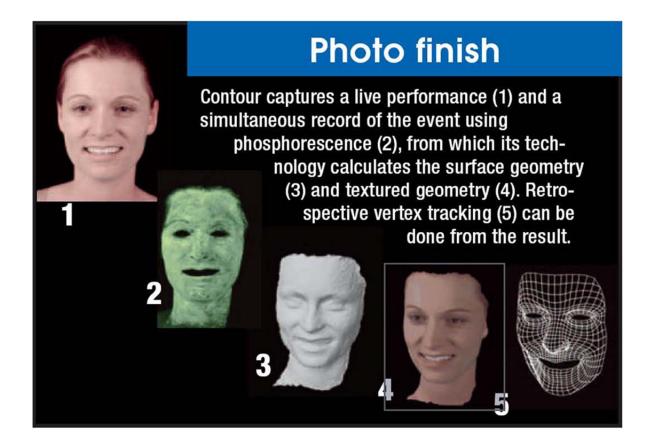
"I live in this environment, and I see stuff every day, so I get a little jaded," said [Digital Domain Senior VP and Executive Producer Ed] Ulbrich... "Other developments have been gradual, more evolutionary than revolutionary. Contour separates the performance from the

⁸ Ulbrich, Ed, "How Benjamin Button Got His Face" TED Talk, Feb 2009. https://www.ted.com/talks/ed_ulbrich_shows_how_benjamin_button_got_his_face.

photography. It's a substantial turning point in the business, and I think it will change how picture are made."

- Group on Computer Graphics and Interactive Techniques ("SIGGRAPH") Conference on July 31, 2006 to wide acclaim, including photographs of Contour's systems and methods on the front page of the *New York Times*¹⁰, page B1 of the *Wall Street Journal*¹¹, and *The Hollywood Reporter*, among other publications. Mr. Perlman was invited to present MOVA Contour technologies and their practical applications in movie production to the Directors Guild of America¹². And he was invited on many occasions to give public presentations on MOVA Contour and the development process that led to its invention, for example in a speech at Columbia University¹³.
- 24. The following photograph¹⁴ from an article in *The Hollywood Reporter* on the day MOVA Contour was unveiled—July 31, 2006—was directed to movie and video game industry professionals and illustrates several Contour Program output files, which are described in further detail later in this complaint:

⁹ Marlowe, Chris, "Contour mapping intricate detail: Mova revolutionizing motion-capture process with new system," The Hollywood Reporter, July 31, 2006, http://www.rearden.com/press/2006/Contour-HollywoodReporter-060731-2.pdf.

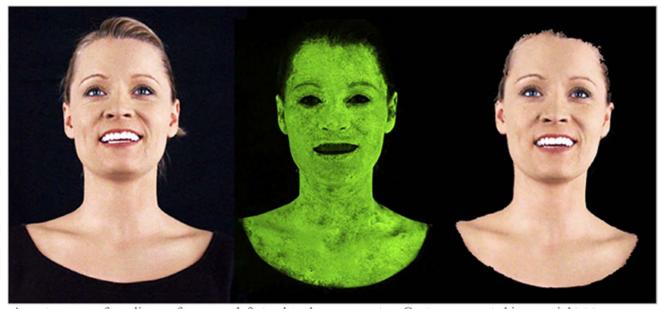

¹⁰ Markoff, John, "Camera System Creates Sophisticated 3-D Effects", New York Times, July 31, 2006. https://nyti.ms/2uAfwGF.

¹¹ Wingfield, Nick, "Digital Replicas May Change Face of Films", July 31, 2006. http://on.wsj.com/2teIRbO.

¹² "Facial Performance Capture for Photoreal Digital Characters' Presented by Steve Perlman, Founder & President, Mova", Digital Day 2007: The Future of the Future, Directors Guild of America, July 28, 2007. http://ishindler.com/articles/DGA_Digital_Day_flyer07.pdf.

¹³ https://youtu.be/1QxrQnJCXKo.

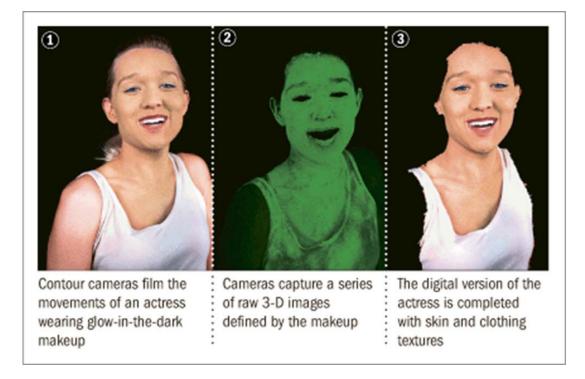
¹⁴ Marlowe, op. cit.


25. Also on July 31, 2006, the following photographs appeared in a *New York Times* article directed to a general readership audience, which illustrate an application of the phosphorbased makeup used in MOVA Contour facial motion capture methods:

Actors must cover themselves with makeup containing phosphorescent powder for Contour, a system that can create 3-D effects. Austin Hice

COMPLAINT Case No.:

and three Contour Program output files (this photograph appeared on the front page): 15



An actress goes from live performance, left, to phosphorescence, to a Contour-generated image, right. Mova.com

26. Also on July 31, 2006, the following photograph appeared in a *Wall Street Journal* article directed to a general readership audience, which illustrates the same three Contour Program output files with "non-technical reader" annotations for each image (the web version of the article included a video that showed the three output files in motion):¹⁶

¹⁵ Markoff, op. cit.

¹⁶ Wingfield, op. cit.

- 27. In one embodiment, MOVA Contour uses an array of cameras whose shutters are synchronized to strobing white lights and ultraviolet lights ("black lights") in conjunction with phosphor-based makeup applied to the performer in random patterns, with the entire system controlled by highly-advanced and proprietary MOVA Contour software that operates the Contour system in real time to capture an actor's performance frame-by-frame, and then creates original Contour Program output files based on the performance, frame-by-frame.
- 28. The Contour system is controlled, and the captured camera images are processed, by several computers running copyrighted software. Some of the software operates prior to a facial capture session to prepare and calibrate the Contour system, some of the software operates in real-time during a live facial capture, and some of the software operates after the facial capture.

 Collectively, this Contour software is referred to herein as the "Contour Program." The Contour Program produces several types of output files, some of which are used by the Contour Program itself for further processing, and some are used for driving a CG face in a movie or video game.
- 29. One embodiment of the operation of the MOVA Contour system and methods, and the Contour Program is described in the following page from a MOVA Contour brochure below, distributed at computer graphics and entertainment industry conferences:

COMPLAINT Case No.:

HOW IT WORKS

PREPARATION

Preparation is completed in under an hour. The actor's skin is sponged with an FDA-approved phosphorescent makeup, either alone or mixed with skin-tone base color. Cloth can also be treated with a phosphorescent dye.

LIGHTS

The Contour capture system is portable, and can be set up on any light-sealed stage. The stage is then lit with custom Kino Flo fluorescent fixtures. Because the lights are flashed on and off at 90 to 120 frames per second (i.e. beyond human perception), the stage appears steadily lit to the eye.

CAMERAS

Two sets of cameras are placed around the stage area:

Color cameras capture normally-lit surfaces only when the lights are on. This provides the reference video used for previews.

Geometry cameras capture phosphorescent patterns (embedded in the makeup or cloth dye) only when the lights are off.

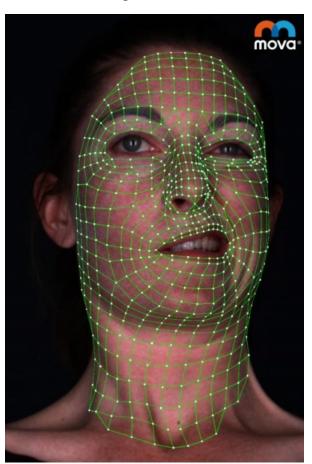
ACTION

Live Performance: Contour enables true "digital directing." Subjects are able to move freely within the capture volume. Color cameras capture normally-lit surfaces, providing reference video from three or more cameras.

Capture Process: Our cameras capture every surface detail where phosphorescent makeup is applied. It's like having millions of invisible markers. Wrinkles, dimples, lips, nostrils—every subtle detail is captured in motion.

Captured Surface: The recorded phosphorescent patterns are then correlated to produce a high-resolution surface geometry—100,000+ polygons per scene.

Tracked Surface: Contour tracks your optimal number of surface points from frame to frame and shot to shot. Tracked points are specified by the client after the capture session and placed wherever required. Tracked points can be added, moved and retracked, utilizing the same capture data.


For more information, or to contact us, visit www.mova.com. The MOVA studio is located in San Francisco, CA.

Copyright MOVA* LLC 2006–2008. MOVA is a registered trademark and Contour is a trademark of MOVA LLC. Patents Pending.

30. **Preparation:** Phosphor-based makeup (various types of phosphor are supported) is applied in a random pattern on the performer's face, neck, etc.—whatever body surfaces are intended to be captured—typically using an airbrush, sponge or cotton swab.

- 31. **Lights:** The performer sits or stands in the arc-shaped Contour rig in a light-sealed stage. One part of the Contour Program causes white lights and black lights to be flashed so rapidly that the flashing is beyond human perception and it appears to the performer and observers that the lights are on steadily. Typically fluorescent lamps or LEDs are used.
- 32. **Cameras:** One part of the Contour Program causes the shutters on two pluralities of cameras, distributed around the rig, to open and close synchronously with the flashing of the lights such that:
 - (a) a first plurality of cameras open their shutters when the white lights are on, illuminating the natural skin color of the performer; and
 - (b) a second plurality of cameras open their shutters when the white lights are off and the phosphor-based makeup is emitting random patterns of light (typically in green or blue).
- 33. **Action:** The performer provides her or his facial performance while one part of the Contour Program causes the output of each of the plurality of cameras to be recorded onto storage devices. The output files of the two pluralities of cameras are illustrated in each half of the face in the "Capture Process" section of the brochure reproduced above.
 - (a) the output of the first plurality of cameras is called herein the "**Skin Texture**" and it looks like normal skin and facial features of the performer from multiple angles, largely without visible makeup, and
 - (b) the output of the second plurality of cameras is called herein the "Makeup Pattern" and it looks like a random pattern of green or blue largely without showing the skin or other facial features (e.g. eyes or mouth) of the performer.
- 34. The Contour Program uses the Makeup Pattern output files to compute a high-resolution 3D surface that moves in the shape of the skin of the performer with sub-millimeter precision. This output file is called herein the "Captured Surface" and, rendered on a display, it looks like a 3D bust of the performer's skin in motion. A still frame of a Captured Surface is shown in the "Captured Surface" section of the brochure reproduced above.

35. The Contour Program also uses the Makeup Pattern output files to compute a high-resolution 3D mesh that tracks 3D points on the skin of the performer as the skin moves from frame-to-frame. This output file is called herein the "Tracking Mesh" and, rendered on a display, it looks like a 3D mesh that exactly follows the movement, stretching and wrinkling, etc., of the skin as the performer moves her or his face. A still frame of a Tracking Mesh is shown in the "Tracked Surface" section of the brochure reproduced above. The Tracking Mesh tracks the subtleties of the performer's facial motion with sub-millimeter precision. For example, if the performer's expression causes the cheeks to bulge out from a smile, the 3D points on the mesh tracking the cheek will bulge out in exactly the same 3D shape. If the forehead furrows into wrinkles, then the 3D points on the mesh tracking the forehead will furrow into wrinkles in exactly the same 3D shape. The Tracking Mesh can be configured to be at any resolution, whether thousands or even millions of 3D points, depending on the level of tracking detail required by the project. An example of a Tracking Mesh tracking skin deformation from an extreme expression is shown here:


36. The Contour output files specified above can be used for many different applications. Often they are used for "retargeting" the performer's face onto another 3D model of a face, either a real face (e.g. when Rupert Grint (Ron Weasley) transforms into the face of Daniel Radcliffe (Harry Potter) in *Harry Potter and the Deathly Hallows, Part I*), or a fictional face (e.g. Mark Ruffalo's face transforms into the Hulk's superhero face in *The Avengers*, Brad Pitt's 44-year-old face retargeted to an 87 year-old version of his face in *The Curious Case of Benjamin Button*), or Jeff Bridge's face retargeted in *TRON: Legacy* (2010) to his 28 year-younger face as it appeared in *TRON* (1982).

37. When the retargeting is from a first performer's real face to the real face of a second performer, then each performer's face is captured by the Contour system, with output files created by the Contour Program for each performer. The Captured Surface, Tracking Mesh, and Skin Texture output files can be used in the construction of a 3D model of the face of the second performer, and then the Tracking Mesh of the first performer is used to control the 3D model of the second performer's face. The result is a 3D model of the face of the second performer that is controlled by the motion of the first performer's face. For example, the photograph below shows a man (the "second performer") captured by Contour. The 3D model of a CG head (center) was generated from the Contour Program output files, including the Makeup Pattern (left) and Tracking Mesh (right):

Case 3:17-cv-04006 Document 1 Filed 07/17/17 Page 19 of 307

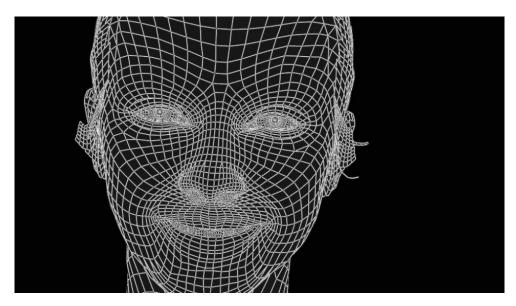
The photograph below shows the performance of the woman ("the first performer") in the brochure reproduced above (showing her Skin Texture (left) and Tracking Mesh (right) Contour output files) retargeted to the man's CG head in the above photo by retargeting the 3D points on her Tracking Mesh to the 3D model of the man's CG head. As you can see in her Live Performance (showing the Skin Texture output file, below left), her facial expression causes the man's CG head to track her facial expression. Contour's Tracking Mesh is so precise that a high degree of realism is maintained, even though the man's CG face and head have a very different shape and size than hers, and he is male and she is female. In fact, Contour output files capture the woman's performance with such fidelity that observers of the animation have commented that despite the fact that the man's CG face clearly has a male *shape*, the *motion* appears to be that of a female face. The video of this and other Contour examples is available on Rearden's home page (www.rearden.com, click on the MOVA logo and click on the video), or directly (www.rearden.com/mova.php or <a href="https://vimeo.com/86130623):

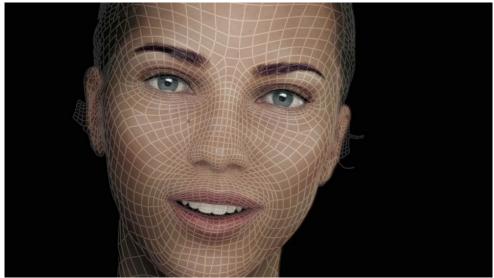
COMPLAINT Case No.:

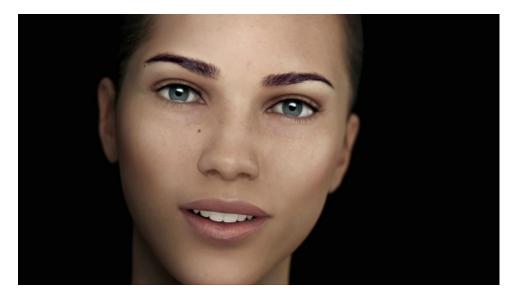
2
 3
 4

38. A similar retargeting process can be performed with a fictional head. For example, the two photographs below are of a performer whose face was captured in the Contour system showing the Skin Texture output file on the left and how she appeared to the naked eye (or a conventional camera), showing the Makeup Pattern combined with Skin Texture on the right:

39. The photograph below shows several views of a CG model of the head of a video game character that was created by an artist:


Although the head looks almost photoreal (it was only a test, not a polished CG model) when it is in a neutral pose and immobile, if the face were animated—whether through hand-drawn animation or prior art motion capture techniques—any photorealism would be lost because the human eye and brain are precisely attuned to notice any unnatural imperfection in facial motion. But, by using the Contour system and methods and the Contour Program, every subtle motion of the human face is captured with sub-millimeter precision, producing output files that retain that precision and can be retargeted to any fictional CG head, bringing it to life.


40. The photographs below show the above video game character's head in two expressions retargeted from the Tracking Mesh generated by the Contour Program from the Contour facial capture of the above actress. Although the photorealism of the motion cannot be seen in static photographs, the motion is realistic and life-like, despite the fact that the performer's face is a very different shape than that of the CG head. Even in a static image, however, one can see how the expressionless CG model tracked the good-natured expression of the actress:



41. A 3D "wireframe" (a mesh of 3D points) of the retargeted CG Character's head is shown below, separately and overlaid upon the rendered image, and then the final rendered image:

COMPLAINT Case No.:

- 42. In summary, the MOVA Contour Program does substantially all of the work in the process of precisely transforming the facial performance of a live performer, capturing the most subtle of facial motions with sub-millimeter precision to drive with realism the life-like motion of faces of CG characters that appear in a finished movie, video game, or other production, or utilized for other applications. The process begins by airbrushing or otherwise applying a random pattern of phosphor-based makeup on a performer, having the performer sit or stand in the arc-shaped Contour rig surrounded by an array of white lights and black lights and two pluralities of cameras, with the lights flashed rapidly and synchronized with the camera shutters as Skin Textures and Makeup Patterns are captured by the Contour Program. The Contour Program then processes the Makeup Pattern to capture thousands or even millions of 3D points as the performer's face moves, producing precise Captured Surface and Tracking Mesh files. Thus, the Contour Program produces output files that include the following:
 - **Skin Texture**, showing the normal skin and facial features of the performer from multiple angles, largely without visible makeup
 - Makeup pattern, showing the random pattern of makeup on the performer from multiple angles, largely without visible skin or facial features
 - Captured Surface, a high-resolution moving 3D surface in the shape of the performer's skin as the performer's face moves
 - Tracking Mesh, a high-resolution 3D mesh that exactly tracks the movement, stretching, wrinkling, etc. as the performer moves their face.

The Tracking Mesh can then be retargeted to a CG face, driving that CG face with photorealistic and natural motion, thereby precisely preserving every subtlety of human expression by the performer in the final movie, video game, or other production.

43. Within days after the Mova Contour Program, system and methods were unveiled at SIGGRAPH in 2006, tests and production began on one of the first movies utilizing MOVA Contour, *The Curious Case of Benjamin Button*. The movie was released in 2008. The photorealistic reverse-aging of Brad Pitt's face from an 87-year-old man backwards to his then-age of 44, and then

Case 3:17-cv-04006 Document 1 Filed 07/17/17 Page 24 of 307

further backwards to a younger age, was widely lauded as a visual effects ("VFX") milestone, the
first ever photorealistic CG face, winning an Academy Award for Best Visual Effects for the team at
the VFX production company, Digital Domain, which had hired Rearden to operate the MOVA
Contour system to capture Brad Pitt's face and generate Contour Program output files for the film.

44. In a widely-viewed TED (Technology, Entertainment, Design) Talk entitled, "How Benjamin Button Got His Face," Ed Ulbrich, Digital Domain's Senior VP and Executive Producer (subsequently the CEO of successor Digital Domain 3.0, Inc.), confirmed that *The Curious Case of Benjamin Button* would have been "impossible" to make but for MOVA Contour's system and methods and the unprecedented facial capture precision and subtlety of the MOVA Contour Program's output files. Ulbrich stated in the talk:

"We first got involved in *The* [Curious Case of Benjamin Button] project in the early 90s.... We took a lot of meetings and we seriously considered it. But at the time, we had to throw in the towel. It was deemed impossible. It was beyond the technology of the day to **depict a man aging backward**... The project came back to us a decade later.... we came across a remarkable technology called Contour... creating a surface capture as opposed to a marker capture...**This was** when we had our 'Aha!' This was the breakthrough...we could put Brad [Pitt] in this [Contour] device, and use this Contour process, and we could stipple on this phosphorescent makeup and put him under the black lights, and we could, in fact, scan him in real time... effectively, we ended up with a [Contour Program output file] 3D database of everything Brad Pitt's face is capable of doing...we could transpose the [Contour Program output file] data of Brad at [then-aged] 44 onto [a 3D model of] Brad at 87. So now, we had a 3D database of everything Brad Pitt's face can do at age 87, in his 70s and in his 60s.³¹⁷

COMPLAINT Case No.:

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

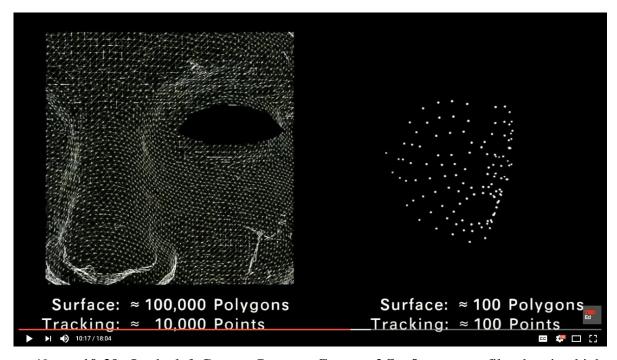
26

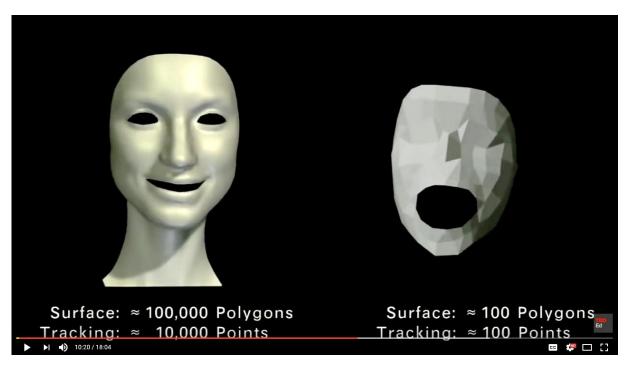
27

28

¹⁷ Ulbrich, op. cit. (emphasis added).

45. In the TED Talk, Ulbrich showed details of the MOVA Contour system and methods, Contour Program output files, and how the CG face of Benjamin Button in the final movie was derived from the Contour Program output files. The following paragraphs describe still frames from the TED talk (labeled by "Minutes:Seconds" from the start of the video).


46. **9:43:** The branded MOVA Contour "rig", a semicircle of two pluralities of cameras with synchronized white lights and black lights surrounding a performer, with MOVA staff operating the Contour system:

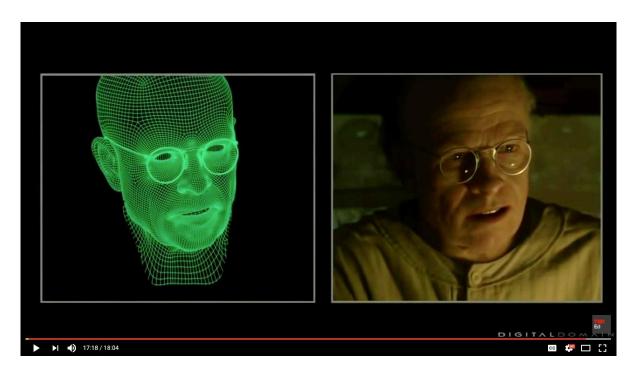

47. **10:11:** On the left, Contour Program **Skin Texture** output file, showing the performer's natural skin color and facial features. On the right, a performer with conventional motion capture markers on her face:

48. **10:17:** On the left, Contour Program **Tracking Mesh** output file, showing hundreds of thousands of 3D points, the Tracking Mesh resolution is so high that the points can only be seen by zooming in. In contrast, conventional marker-based resolution is shown on the right:

49. **10:20:** On the left Contour Program **Captured Surface** output file, showing high-resolution surface geometry. In contrast, marker-based facial capture surface geometry on the right:

50. **10:39:** Contour Program **Makeup Pattern** output files, showing random patterns of phosphor-based makeup. Each of the four Contour facial captures of Mr. Pitt was a separate motion facial performance used for a different facial expression of Benjamin Button. The Contour Program created high-resolution **Captured Surface** and **Tracking Mesh** output files from each of these:

51. **10:49:** Contour Program **Makeup Pattern** output files, showing how many Contour output files were used. Each of the Contour facial captures was a separate motion facial performance of Mr. Pitt used for a different facial expressions of Benjamin Button. The Contour Program created high-resolution **Captured Surface** and **Tracking Mesh** output files from each of these, creating a database of Capture Surface and Tracking Mesh Contour output files:

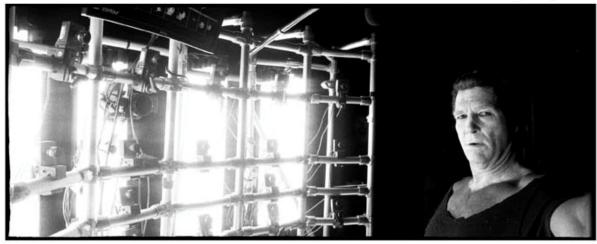


52. 12:33: Contour Program Makeup Pattern output file (left), Captured Surface output file (middle), retargeted Captured Surface and Tracking Mesh output files to a derivative fictional aged head (right), are shown below. The 3D points of the Contour Tracking Mesh output file of Mr. Pitt's actual face were retargeted to corresponding 3D points on the fictional "maquette" (i.e. hand-made 3D bust) of Mr. Pitt at age 87. As a simple example, the 3D point on the right corner of Mr. Pitt's actual mouth could correspond to the 3D point on the right corner of the 3D maquette's mouth. As Mr. Pitt's smile widens during the Contour capture session, moving the tracked 3D point on the corner of his mouth outward, the retargeted 3D point on the maquette's mouth would move proportionately outward causing the 87-year-old smile to widen. As described by Mr. Ulbrich: "[Left:] This is Brad doing one of the [character expression] poses. [Middle:] And here's the resulting [Captured Surface output file] data that comes from that, the model that comes from that. [Right:]

Retargeting is the process of transposing that [Captured Surface and Tracking Mesh output file] data onto another model. And because the life cast, or the bust—the maquette—of Benjamin was made from Brad, we could transpose the [Captured Surface and Tracking Mesh output file] data of Brad at 44 [years] onto Brad at 87[years]. Effectively, we ended up with a [Captured Surface and Tracking Mesh output file] 3D database of everything Brad Pitt's face is capable of doing...we could transpose the [Captured Surface and Tracking Mesh output file] data of Brad at [then-aged] 44 onto [a 3D maquette of] Brad at 87. So now, we had a 3D database of everything Brad Pitt's face can do at age 87, in his 70s and in his 60s":

53. **17:18:** On the left is 87-year-old fictional head maquette Tracking Mesh retargeted from, and derivative of, a Contour Program **Tracking Mesh** output file, with a pair of glasses added in as a prop. The final derivative face is shown on the right after various steps such as texturing and lighting that is applied to the maquette. The resulting derivative face is integrated into the live-action footage of the final scene, producing the final derivative work:

54. The photorealistic reverse-aging derived from the MOVA Contour system, methods and output files received wide acclaim when *The Curious Case of Benjamin Button* was released in December of 2008. But even before the movie's release, word of the unprecedented CG face realism achieved by MOVA Contour was spreading through the VFX industry. In July of 2008, defendant Disney hired MOVA for another reverse-aging movie, *TRON: Legacy*, the sequel to Disney's 1982 *TRON.* MOVA Contour was used in a similar manner as in *Benjamin Button* to reverse-age the face of Jeff Bridges, the star of *TRON* and *TRON: Legacy*, to look as he did in 1982. Mr. Bridges published his experience of using MOVA Contour through wide-angle black-and-white photography and hand-written notations, below:¹⁸

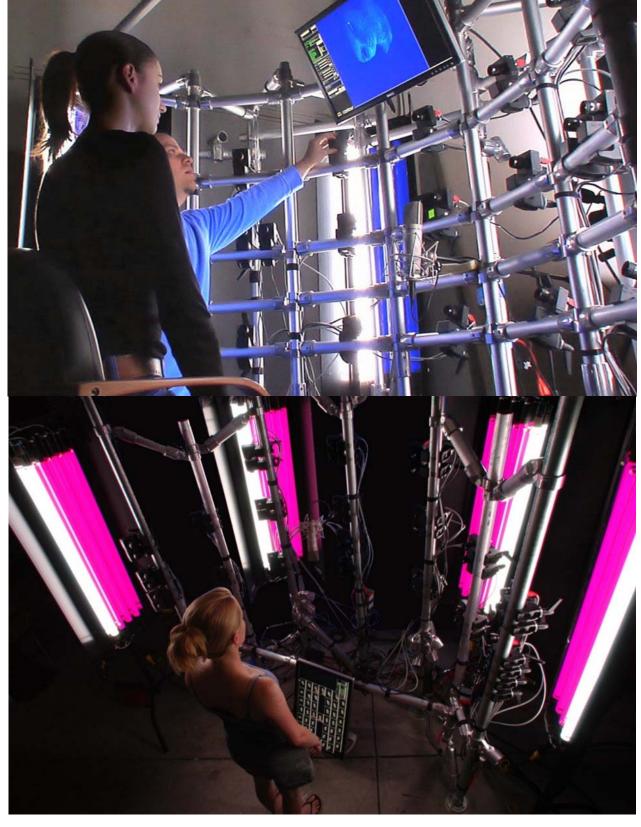

¹⁸ http://www.jeffbridges.com/tron_book/tron_book_08.html.

and Reade

to be digitized

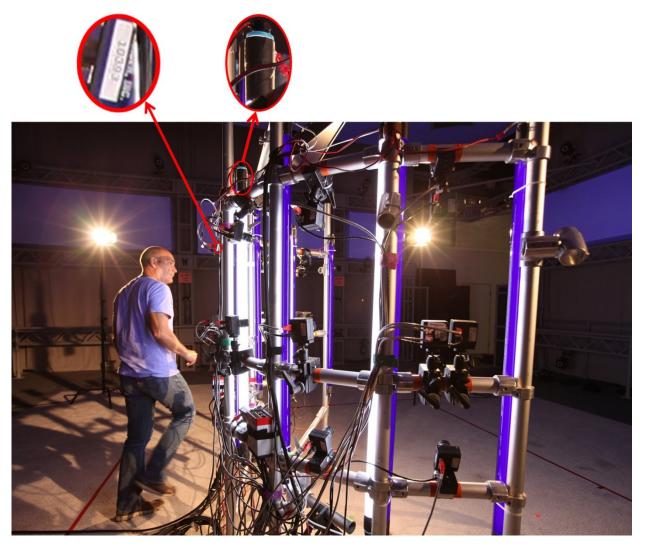
mova Technology came up with this rig

COMPLAINT Case No.:


that captures every Expression you can think of



from Every angle


- 55. In addition to transforming an actor's age, the same process can be used for many other VFX purposes, such as transforming an actor's face into a creature (e.g. the Hulk in defendant Disney's *The Avengers*), or mapping one character's face onto another's (e.g. Rupert Grint (Ron Weasley) was transformed into Daniel Radcliffe (Harry Potter) in *Harry Potter and the Deathly Hallows*, *Part I*).
- 56. The following four photographs show the arc-shaped Contour rig, two pluralities of synchronized cameras, white light and black light sources, computers running the Contour Programs, and actors wearing the phosphor-based makeup of the MOVA Contour systems and methods, used lawfully by defendants and operated by Rearden and Rearden-controlled entities in *TRON: Legacy*

(2010), *Pirates of the Caribbean: On Stranger Tides* (2011), *John Carter* (2012), and *The Avengers* (2012) (Mr. Perlman appears at the right in the last photograph):

57. And the following photograph released by Digital Domain shows the stolen MOVA Contour rig that was operated by the thieves and used unlawfully by defendants in at least *Guardians* of the Galaxy and Beauty and the Beast. Close inspection of the photo shown in the left inset, shows the thieves neglected to remove a Rearden, Inc. Asset Tag on one of the stolen cameras (Rearden, Inc. is Rearden LLC's predecessor in interest). Rearden Asset #10393 is a Basler 102f Camera, Serial # 20606024, purchased on October 1, 2006 and stolen in 2013. Also, numerous tell-tale details specific to Contour's operation are visible in the stolen Contour rig photograph (e.g. the right inset shows black tape is wrapped around the end of a fluorescent lamp tube to prevent light spillage from the glowing electrode, a Contour-specific technique taught in Rearden's US Patent 7,567,293 at 19:66-20:15), confirming that the thieves used the identical Rearden system and methods:

1	
2	
3	
4	
5	
6	
7	

58. The Contour system has no "operating manual." It is a hand-built system, the operation of which is known only by Rearden's MOVA team who invented it and Rearden's MOVA employees and contractors who have been trained to use it under strict confidentiality obligations. It was not intended to be an end-user system and must be used carefully with knowledge of its operation for it to function correctly and safely. Defendants were able to use the Contour system only because they had engaged former Rearden employees to operate Rearden's Contour system using Rearden trade secrets without authorization.

B. The MOVA Contour intellectual property

- 59. The MOVA Contour computer program is the subject of United States Copyright Registration No. TXu001977151, a copy of which is attached hereto as Exhibit 1. Plaintiff Rearden Mova is the owner of Copyright Registration No. TXu001977151. The MOVA Contour Program runs on computers that are part of the MOVA Contour physical apparatus.
- 60. The MOVA Contour methods and systems are the subject of issued United States Patent Nos. 7,605,861 (the "'861 Patent"), 8,659,668 (the "'668 Patent"), 7,548,272 (the "'272 Patent"), 7,567,293 (the "'293 Patent"), and 8,207,963 (the "'963 Patent") (copies are attached as Exhibits 2, 3, 4, 5 and 6), as well as numerous United States pending patent applications, and international patents and patent applications. Plaintiff Rearden Mova is the exclusive owner of the '861, '668, '272, '293, and '963 patents, as well as all other domestic patent applications and all international patents and patent applications drawn to the MOVA Contour systems and methods. The Mova Contour physical apparatus and methods are embodiments of the claims of the '861, '668, '272, '293 and '963 patents.
- 61. MOVA® and Contour® are the subject of United States Trademark Registration Nos. U.S. Registration No. 3,843,152 and U.S. Registration No. 3,628,974, respectively. Copies of these registrations are attached hereto as Exhibits 7 and 8.
- 62. The MOVA Contour systems and methods include know-how, confidential information that derives independent economic value, both actual and potential, from not being generally known to the public or other persons who can obtain economic value from its disclosure and use. The MOVA Contour confidential information includes, without limitation:

Case No.:

- the source code and object code used in operating the MOVA Contour physical assets;
- many specific functionally-designed mechanisms, such as determining when part of the face is obstructed from the view of certain cameras and seamlessly filling in those parts of the face with views from other cameras:
- certain of the processes used along with the MOVA Contour physical assets, such as the timing configurations for the Mova system;
- sequencing the steps of calibration, aperture adjustment and focus adjustment of the Mova cameras;
- specific phosphor-based makeup formulations;
- techniques for applying makeup to performers being captured;
- specific electrical set up safety measures of the MOVA Contour rig;
- specific electrical modification of fluorescent light ballasts so as to operate safely;
- specific performer medical considerations, such as, in the case of performers receiving Botox treatments for facial wrinkles, scheduling shoots in specific intervals relative to their treatments to maintain natural skin motion;
- specific instructions to performers on how to perform in such a way to keep their faces within the capture volume;
- specific instructions to performers for specialized moves, such as singing, or bending the head downward and upward, with the face going out of and then back into view of the cameras; and
- information regarding MOVA's prior customer relationships and business terms.
- 63. Rearden and Rearden Mova have protected this confidential information by, *inter alia*, maintaining email, documents, source and object code, and other software in secure locations; controlling access to these locations; and by including confidentiality provisions in its agreements with all of its employees and contractors who have ever had access to any source code, object code other software, electrical set up, proprietary electrical circuit designs, timing systems, interconnects, makeup formulations, phosphor research, results of proprietary tests, etc. The following confidentiality provisions of a Rearden employment agreement (Rearden referenced as "the COMPLAINT

COMPLAINT Case No.:

Company"), for example, are representative of those in all other Rearden employment and contractor agreements:

- "At all times, both during my employment by the Company and after its termination, I will keep in confidence and trust and will not use or disclose any Proprietary Information or anything relating to it without the prior written consent of an officer of the Company..."
- "I agree that during my employment by the Company I will not remove any Company Documents and Materials from the business premises of the Company or deliver any Company Documents and Materials to any person or entity outside the Company, except as I am required to do in connection with performing the duties of my employment. I further agree that, immediately upon the termination of my employment by me or by the Company for any reason ... I will return all Company Documents and Materials, apparatus, equipment and other physical property, or any reproduction of such property ..."
- 64. The MOVA Contour confidential information constitutes trade secrets as that term is defined in the California Uniform Trade Secrets Act ("CUTSA") at sections 3426 to 3426.11 of the California Civil Code, and the Defense of Trade Secrets Act at 18 U.S.C. § 1832(b), *et seq*.
- 65. The "MOVA Assets" at issue herein include the MOVA Contour technology, and related hardware and software, source code, domestic and international patents and patent applications, domestic and international trademarks, copyrights, trade secrets, domain names, business records, and various related physical goods (the "MOVA Assets").

C. Rearden's use of the MOVA Contour system and methods in fifteen major motion pictures and industry acclaim

- 66. Rearden and/or its controlled affiliates operated the MOVA Contour system for, and authorized used of its system, methods and Contour Program output files by Paramount Pictures for "The Curious Case of Benjamin Button" (2008) and Transformers: Dark of the Moon (2011).
- 67. Rearden and/or its controlled affiliates operated the MOVA Contour system for, and authorized used of its system, methods and Contour Program output files by Universal Studios in *The Incredible Hulk* (2008) and *Snow White and the Huntsman* (2012).

- 68. Rearden and/or its controlled affiliates operated the MOVA Contour system for, and authorized used of its system, methods and Contour Program output files by 20th Century Fox in *Percy Jackson and the Olympians: The Lightning Thief* (2010).
- 69. Rearden and/or its controlled affiliates operated the MOVA Contour system for, and authorized used of its system, methods and Contour Program output files by Sony Pictures in *The Amazing Spider-Man* (2012).
- 70. Rearden and/or its controlled affiliates operated the MOVA Contour system for, and authorized used of its system, methods and Contour Program output files by Warner Brothers Studios in *Harry Potter and the Deathly Hallows*, Part 1 (2010) and Part 2 (2011), *Green Lantern* (2011), *Jack the Giant Slayer* (2013), and *Gravity* (2013).
- 71. And Rearden and/or its controlled affiliates operated the MOVA Contour system for, and authorized used of its system, methods and Contour Program output files by defendants Disney Company and Disney MPG in *TRON: Legacy* (2010), *Pirates of the Caribbean: On Stranger Tides* (2011), *John Carter* (2012), and *The Avengers* (2012) (including defendant Marvel).
- 72. In each of the above fifteen films, the motion picture studios performed a routine intellectual property due diligence prior to contracting with Rearden for use of the MOVA Contour systems and methods, in part to verify that Rearden and/or Rearden-controlled affiliates owned the MOVA Contour Assets and technology and had the right to use them for the benefit of the studios.
- 73. Rearden and/or Rearden-controlled affiliates have built considerable good will in the MOVA Contour Assets and technology. Rearden and/or Rearden-controlled affiliates used the MOVA Contour systems and methods in the fifteen major motion pictures identified above, which collectively grossed roughly \$9.5 billion in global box office. Five of these movies are in the top-25 highest-grossing movies since 2008 (when the first Contour movie was released), including the number one highest grossing movie in each of 2011 and 2012¹⁹. The MOVA Contour system and methods and the Contour Program output files have been the subject of numerous motion picture

¹⁹ www.boxofficemojo.com.

industry press articles in which movie industry luminaries like director David Fincher have lauded the MOVA Contour technology:

"Contour's promise is enormous," Fincher said. "The notion that the human face in all its subtleties could be mapped in real time and with such density of surface information opens up so many possibilities for both two- and three-dimensional image makers and storytellers." ²⁰

The MOVA Contour system and methods and the Contour Program output files have been the subject of an invited presentation by Steve Perlman to the Director's Guild of America²¹, and they were identified as a "breakthrough" in the aforementioned TED talk²². MOVA Contour facial capture's improvements over prior facial performance capture technologies have been acclaimed by major motion picture actors, producers, directors, and top VFX professionals, including Ed Ulbrich in his TED Talk description of MOVA Contour and how it was essential in the creation of *The Curious Case of Benjamin Button*.²³. And on February 9, 2015, the Academy of Motion Picture Arts and Sciences awarded the Scientific and Technical Award to the MOVA [Contour] facial performance capture system.²⁴

D. Transfer of the MOVA Assets to OnLive, Inc., OL2, Inc., and Rearden Mova

- 74. The MOVA Contour systems and methods, along with video game streaming technology, was spun out of Rearden in 2007 into OnLive, Inc., a corporation controlled by Rearden. OnLive, Inc. thereafter owned all of the MOVA Assets, both Contour and other motion capture technology.
- 75. On August 17, 2012, OnLive, Inc. assigned all of its assets, including the MOVA Assets, to OL2, Inc. as part of an assignment for the benefit of creditors ("ABC"). On information and belief, OL2, Inc. was primarily focused on the video gaming unit of OnLive, Inc., and was not interested in offering any MOVA Contour movie production services.

²⁰Marlowe, July 31, 2006, op. cit.

²¹ Directors Guild of America, July 28, 2007, op. cit.

²² Op. cit.

²³ Ulbrich, Op. cit.

²⁴ <u>http://oscar.go.com/news/oscar-news/150209-ampas-sci-tech-awards-2015-winners</u>

- 76. In October of 2012, Rearden learned that OL2, Inc. was interested in selling the MOVA Assets, and ultimately decided to reacquire them. Rearden formed a wholly-owned subsidiary, MO2 LLC, as a vehicle to acquire the MOVA Assets from OL2, Inc.
- 77. Rearden's CEO Perlman tasked his employee Greg LaSalle with management of MO2 LLC. LaSalle had worked with Rearden from 1999 to 2007, and between 2007 and August 17, 2012 worked for OnLive, Inc. LaSalle was rehired by Rearden LLC on August 20, 2012.
- 78. On February 11, 2013, OL2, Inc. transferred the MOVA Assets to MO2 LLC through a Membership Interest and Asset Purchase and Sale Agreement. MO2 LLC is wholly owned by Rearden.
- 79. On April 19, 2013, MO2 LLC transferred the MOVA Assets to another wholly-owned Rearden company, Rearden Mova LLC.
- 80. On September 18, 2014, Rearden recorded patent assignments for the MOVA Asset patents, reflecting the assignment from OL2, Inc. LLC to MO2 LLC made in the Membership Interest and Asset Purchase and Sale Agreement.
- 81. Rearden also recorded patent assignments for the MOVA Asset patents, reflecting the assignment from MO2 LLC to Rearden Mova on April 19, 2013. However, the execution dates of the online forms were incorrectly filled in with the recordation dates of September 18, 2014 (and in one case, September 8, 2014). As soon as it became aware of the errors, Rearden corrected the erroneous execution dates to the correct date: April 19, 2013.

E. Shenzhenshi's transparently false ownership claims

82. Unknown to Rearden, starting in October 2012, then Rearden employee LaSalle was in negotiation with a company called Digital Domain 3.0, Inc. ("DD3"), then a People's Republic of China and India-owned Delaware Corporation doing business in Venice Beach, California under "DD3" or "Digital Domain" business names. DD3 is a successor company to prior Digital Domain companies that Rearden, OnLive, Inc., and LaSalle (on behalf of Rearden and OnLive, Inc.) had worked with previously in movie productions making authorized use of the MOVA technology identified above. DD3 is currently wholly-owned by Digital Domain Holdings Ltd. ("DDHL"), a Hong Kong exchange-listed Bermuda corporation with its principal place of business in Hong Kong. COMPLAINT Case No.:

- 83. On February 20, 2015, Shenzhenshi Haitiecheng Science and Technology Co., Ltd. ("Shenzhenshi"), allegedly another People's Republic of China corporation with its purported principal place of business in Shenzhen, China, filed a declaratory judgment action against Rearden and various other Rearden entities in this judicial district, Case No. 3:15-cv-00797-JST, alleging that it had acquired the MOVA Assets by assignment from MO2 LLC on May 8, 2013. Shenzhenshi further alleged that it had granted an exclusive license to the MOVA Assets to DD3.
- 84. But as set forth above, MO2 LLC did not own the MOVA Assets on May 8, 2013, so it could not have assigned them to Shenzhenshi on that date. Rather, MO2 LLC had previously assigned the MOVA Assets to Rearden Mova LLC on April 19, 2013. Further, on May 8, 2013 LaSalle was not a Rearden employee, and as an employee or not, LaSalle never had authority to sell the MO2 LLC Assets to anyone (and certainly not for his personal enrichment). Nor could Shenzhenshi have granted a license of the MOVA Assets to Digital Domain because it never owned the MOVA Assets. Shenzhenshi, DD3 and LaSalle knew that the MO2-Shenzhenshi transaction was a ruse. LaSalle wrote to his attorneys, "[DD3] are going to actually acquire the Mova assets through one of their Chinese companies [Shenzhenshi]. I believe this is so it would be nearly impossible for Steve [Perlman] to go after them....They will indemnify me against any claims brought by Rearden and Steve Perlman." ²⁵
- 85. The day after the Court granted Rearden permission to file counterclaims, a company called Virtue Global Holdings, Ltd., a British Virgin Islands corporation, suddenly appeared in the Shenzhenshi case represented by Shenzhenshi's counsel. Shenzhenshi absconded from the litigation. Months later Virtue Global Holdings alleged that Shenzhenshi had assigned the MOVA Assets to Virtue Global Holdings on December 17, 2015. But again, as set forth above, Shenzhenshi never owned the MOVA Assets and therefore could not have assigned them to Virtue Global Holdings.
- 86. Rearden asserted counterclaims for declaratory relief against Shenzhenshi and Virtue Global Holdings affirming Rearden's ownership of the MOVA Assets, and for patent, trademark,

²⁵ Shenzhenshi, et al. v. Rearden, et al., NDCA Case No. 15-797, HEYL001594.

2 3

4

5 6

8

9

7

10

11

12

14

15

13

16

17

18 19

20

21

22

23

24

25

26

27

28

COMPLAINT Case No.:

and copyright infringement, misappropriation of trade secrets, fraudulent transfer, and other causes of action, against Shenzhenshi and Virtue Global Holdings.

The MOVA Asset ownership and fraudulent transfer claims were bifurcated and tried 87. in December, 2016. A ruling is pending.

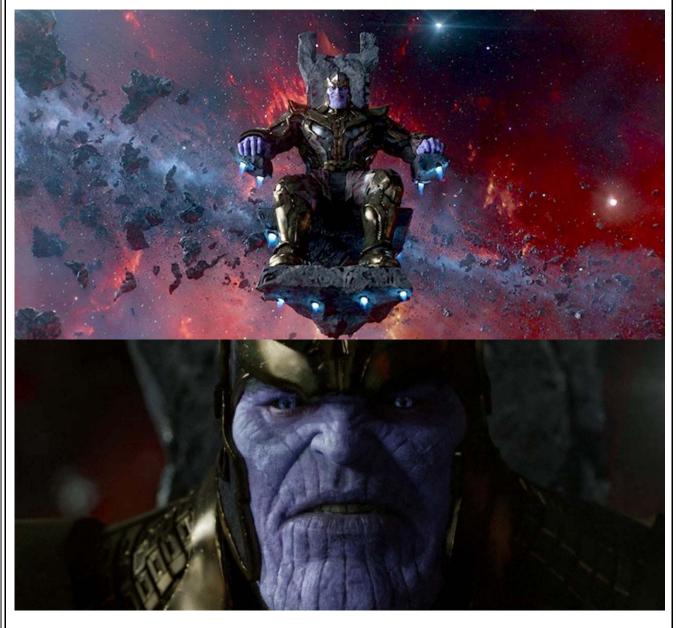
F. Defendants' unauthorized use of the MOVA Assets and Technologies

- 88. Once LaSalle was hired by DD3 in or about May, 2013, DD3 took possession of the MOVA Contour physical apparatus for Shenzhenshi. On information and belief, LaSalle had access to the secure storage facility where the physical MOVA Contour apparatus was kept, and assisted DD3 in taking unauthorized possession of the patented MOVA Contour apparatus and copies of the copyrighted Contour Program.
- 89. Thereafter, DD3 began secretly offering MOVA Contour facial performance capture services and Contour Program output files to motion picture studios and production companies, including defendants. The system used by DD3 is the very same system developed and constructed by Rearden and stolen by DD3 from the secure storage facility, which includes commercial embodiments of the system claims in the MOVA patents. And the statements by Beauty and the Beast co-stars Stevens and Watson, and Director Condon, confirm that DD3 performed the very same methods that are the commercial embodiments of the method claims of the MOVA patents.²⁶
- 90. But even before Shenzhenshi allegedly acquired the MOVA Assets from LaSalle, and before DD3 began secretly offering MOVA Contour facial performance capture services and output files, Disney MPG and DD3 were in negotiations with LaSalle to acquire the MOVA Assets in March 2013. On March 27, 2013, Rearden wrote LaSalle a demand letter (the "Rearden Demand Letter") asserting that Rearden owned the MOVA Assets, that LaSalle had taken them illegally, and that Rearden would take legal action if necessary. ²⁷ LaSalle notified Disney MPG that he had received the Rearden Demand Letter and as a result, Disney MPG "dropped out" of the running to acquire the MOVA Assets.²⁸ Only DD3 remained, but after receiving the Rearden Demand Letter, it

²⁶ Paris Press Conference, Feb 17, 2017. Op. cit.

²⁷ Shenzhenshi, et al. v. Rearden, et al., NDCA Case No. 15-797, HEYL000306-HEYL000307.

²⁸ Shenzhenshi, et al. v. Rearden, et al., NDCA Case No.15-797, Dkt: 383, p. 169, op. cit.


also declined to acquire the MOVA Assets itself, and instead had its shadowy foreign affiliate (of unknown relationship) Shenzhenshi acquire the MOVA Assets and license them back to DD3 "...so it would be nearly impossible for Steve [Perlman] to go after them."

Pospite the fact that defendant Disney MPG was sufficiently concerned about the Rearden Demand Letter to drop out of acquiring the MOVA Assets, despite the fact that it knew that MOVA Asset ownership was claimed by Rearden (the company they had hired for MOVA Contour services on four previous movies), and it knew Rearden had asserted that LaSalle had stolen the MOVA Assets in the Demand Letter, defendant Disney MPG nonetheless secretly contracted, either directly or through entities subject to its supervision and control, for and used the MOVA Assets on at least two of their largest motion pictures without ever contacting Rearden.

1. Guardians of the Galaxy

- 92. *Guardians of the Galaxy* is a motion picture produced by defendant Marvel subject to the supervision and control of defendant Disney MPG. At all material times, defendants Disney MPG and Marvel were dominated and controlled by defendant Disney Company.
- 93. On information and belief, between February, 2013 and July, 2014, Disney MPG, either directly or through an entity subject to its supervision and control, contracted with DD3 to provide facial performance capture services and output files made with the patented MOVA Contour systems and methods and the copyrighted Contour Program and output files, including at least the performance of actor Josh Brolin as the character Thanos in *Guardians of the Galaxy*. DD3 provided such facial performance capture services subject to the terms of its contract with, and subject to the supervision and control of, defendant Disney MPG. Disney MPG incorporated the output files of the patented MOVA Contour systems and methods and the copyrighted Contour Program and output files into derivative works that were reproduced, distributed, displayed and performed in *Guardians of the Galaxy* without authorization. The following photograph was used by Disney MPG to promote the use of the MOVA Contour facial motion capture technology in the film, followed by a close-up of the Thanos character's face that is derivative of MOVA Contour Program output files:

²⁹ Shenzhenshi, et al. v. Rearden, et al., NDCA Case No.15-79717, HEYL001594, op. cit.

94. Defendant Disney MPG knew or should have known that the patented MOVA Contour systems and methods and copyrighted Contour Program and output files were owned by Rearden and/or other Rearden-controlled entities due to several factors:

Disney MPG had been notified of the Rearden Demand Letter, which accused then Rearden employee LaSalle of stealing the MOVA Assets. Upon conducting due diligence, Disney MPG had dropped out of the running to acquire the MOVA Assets from LaSalle.

³⁰ Shenzhenshi, et al. v. Rearden, et al., NDCA Case No. 15-797, Dkt: 383, p. 169, op. cit.

Disney MPG had previously contracted with Rearden and/or its controlled entities to provide authorized facial performance capture services and Contour Program output files for use in TRON: Legacy (2010), Pirates of the Caribbean: On Stranger Tides (2011), John Carter (2012), and *The Avengers* (2012) (including defendant Marvel), all high-value movies.

95. Neither Rearden nor Rearden Mova were aware or authorized use of the patented MOVA Contour systems and methods and copyrighted Contour Program and output files by DD3, defendant Marvel, defendant Disney MPG, or any other party in Guardians of the Galaxy. Nor, were Rearden or Rearden Mova aware of—let alone authorize—any reproduction, distribution, performance, or display of the copyrighted Contour Program's output files or the creation of derivative works based upon those output files, by DD3, defendant Marvel, defendant Disney MPG, or any other party in Guardians of the Galaxy. At no time did DD3, defendant Marvel, defendant Disney MPG, or any other party, negotiate or come to an agreement on financial terms in which Rearden would authorize MOVA Contour services to be used in *Guardians of the Galaxy*.

96. Defendant Disney MPG released *Guardians of the Galaxy* in domestic theaters on July 21, 2014. To date, the film has grossed over \$333 million at the box office in the United States and \$773 million globally. 31 It was the third highest-grossing film released in 2014, both domestically and worldwide.³²

97. Defendant Buena Vista released Guardians of the Galaxy on DVD and Blu-ray, and via digital distribution such as download and streaming services in the United States on or about December 9, 2014. DVD and Blu-ray sales in the United States exceeded \$131 million. Buena Vista also authorized distribution of Guardians of the Galaxy across a wide range of other distribution means, such as on airplanes, in hotels, through cable and satellite television services, etc.

27 28

31 http://www.boxofficemojo.com/movies/?id=marvel2014a.htm. 32 http://www.boxofficemojo.com/yearly/chart/?yr=2014,

http://www.boxofficemojo.com/alltime/world/.

COMPLAINT Case No.:

2. Avengers: Age of Ultron

98. Avengers: Age of Ultron is a motion picture produced by defendant Marvel subject to the supervision and control of defendant Disney MPG. At all material times, defendants Disney MPG and Marvel were dominated and controlled by defendant Disney Company.

99. On information and belief, between May 2013 and April 2015, Disney MPG, either directly or though an entity subject to its supervision and conrol, contracted with DD3 to provide facial performance capture services and output files made with the patented MOVA Contour systems and methods and the copyrighted Contour Program and output files, including at least a reprisal of the Thanos character. DD3 provided such facial performance capture services and output files subject to the terms of its contract with, and subject to the supervision and control of, defendant Disney MPG. Disney MPG incorporated the output files of the patented MOVA Contour systems and methods and the copyrighted Contour Program into a derivative work, the same Thanos character from *Guardians of the Galaxy*, appearing in the closing credits of *Avengers: Age of Ultron*:

100. Defendant Disney MPG knew or should have known that the patented MOVA Contour systems and methods and copyrighted Contour Program and output files were owned by Rearden and/or other Rearden-controlled entities due to several factors:

- Disney MPG had been notified of the Rearden Demand Letter, which accused then Rearden employee LaSalle of stealing the MOVA Assets. Upon conducting due diligence, Disney MPG had dropped out of the running to acquire the MOVA Assets from LaSalle. 33
- Disney MPG had previously contracted with Rearden and/or its controlled entities to provide authorized facial performance capture services and Contour Program output files for use in TRON: Legacy (2010), Pirates of the Caribbean: On Stranger Tides (2011), John Carter (2012), and The Avengers (2012) (including defendant Marvel), all high-value movies.
- 90. On information and belief, before contracting with DD3, Disney MPG performed an intellectual property due diligence in part to confirm DD3's right to provide facial performance capture services and digital output made using the patented MOVA Contour system and methods and copyrighted ContourPprogram. Based upon its due diligence, Disney MPG knew or should have known that DD3 did not have the right to offer or provide facial performance capture services and output files made using the patented MOVA Contour system and copyrighted Contour Program.
- MOVA Contour systems and methods and copyrighted Contour Program and output files by DD3, defendant Marvel, defendant Disney MPG, or any other party in *Avengers: Age of Ultron*. Nor, were Rearden or Rearden Mova aware of—let alone authorize—any reproduction, distribution, performance, or display of the copyrighted Contour Program's output files or the creation of derivative works based upon those output files, by DD3, defendant Marvel, defendant Disney MPG, or any other party in *Avengers: Age of Ultron*. At no time did DD3, defendant Marvel, defendant Disney MPG, or any other party, negotiate or come to an agreement on financial terms in which Rearden would authorize MOVA Contour services to be used in *Avengers: Age of Ultron*.
- 102. Defendant Disney MPG released *Avengers: Age of Ultron* in domestic theaters on or about April 13, 2015. The film has grossed over \$459 million at the box office in the United States, and over \$1.4 billion worldwide.

³³ Shenzhenshi, et al. v. Rearden, et al., NDCA Case No. 15-797, Dkt: 383, p. 169, op. cit.

103. Defendant Buena Vista released *Avengers: Age of Ultron* on DVD and Blu-ray, and by digital distribution such as download and streaming services on or about October 2, 2015. DVD and Blu-ray sales in the United States exceed \$79 million. Buena Vista also distributed *Avengers: Age of Ultron* across a wide range of other distribution means, such as on airplanes, in hotels, through cable and satellite television services, etc.

3. Beauty and the Beast

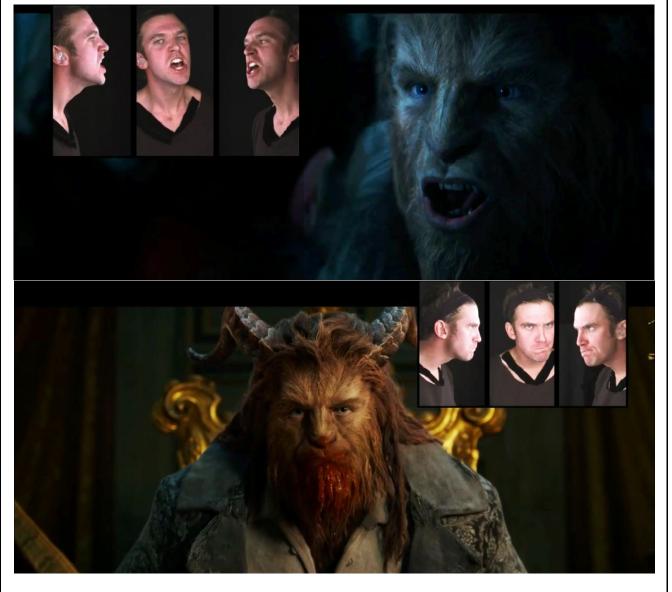
- 104. *Beauty and the Beast* is a motion picture produced by defendant Disney MPG and defendant Mandeville Films, subject to the supervision and control of defendant Disney MPG. At all material times, Disney MPG was dominated and controlled by defendant Disney Company.
- 105. On information and belief, between February 2013 and March 2017, Disney MPG, either directly or through an agent, contracted with DD3 to provide facial performance capture services and products made using the patented MOVA Contour system and methods, and copyrighted Contour Program and output files. Including, at least the performance of actor Dan Stevens as the Beast character. DD3 provided such facial performance capture services and Contour Program output files subject to the terms of its contract and subject to the supervision and control of defendant Disney MPG. Disney MPG incorporated the Contour Program output files of the patented MOVA Contour systems and methods and copyrighted Contour Program into derivative works that were reproduced, distributed, displayed and performed in *Beauty and the Beast*, without authorization.
- 106. Defendant Disney MPG knew or should have known that the patented MOVA Contour physical apparatus and copyrighted Contour Program and output files were owned by Rearden and/or other Rearden-controlled entities because:
 - Disney MPG was notified of the Rearden Demand Letter, which accused Rearden employee LaSalle of stealing the MOVA Assets. Upon conducting due diligence, Disney MPG dropped out of the running to acquire the MOVA Assets from LaSalle.³⁴

COMPLAINT Case No.:

³⁴ Shenzhenshi, et al. v. Rearden, et al., NDCA Case No.15-797, Dkt: 383, p. 169, op. cit.

Disney MPG had previously contracted with Rearden and/or its controlled entities to provide authorized facial performance capture services and Contour Program output files for use in TRON: Legacy (2010), Pirates of the Caribbean: On Stranger Tides (2011), John Carter (2012), and *The Avengers* (2012) (including defendant Marvel), all high-value movies.

107. Neither Rearden nor Rearden Mova were aware of—let alone authorized use of—the patented MOVA Contour system and methods, and copyrighted MOVA Contour Program and output files, by DD3, defendant Mandeville Films, defendant Disney MPG, or any other party in *Beauty and* the Beast. Nor, were Rearden or Rearden Mova aware or authorize any reproduction, distribution, performance or display of the copyrighted Contour Program's output files or the creation of derivative works based upon those output files by DD3, defendant Marvel, defendant Disney MPG, or any other party in Beauty and the Beast. At no time did DD3, defendant Mandeville Films, defendant Disney MPG, or any other party negotiate or come to agreement on financial terms in which Rearden would authorize MOVA Contour services to be used in Beauty and the Beast.


108. The photograph below is a still from a video clip in the "Beauty of a Tale" featurette, distributed with versions of the Beauty and the Beast Blu-ray and through other digital distribution, that shows three views of Beast actor Dan Stevens in the stolen MOVA Contour rig. A clapperboard in front of his face shows that a facial performance is about to begin. The middle image shows the clapperboard from the front with Mr. Stevens' forehead visible behind it, the left image shows a side view from left of Mr. Stevens' face and the left side of the clapperboard, and the right image shows a side view from the right of Mr. Stevens' face and part of the right side of the clapperboard:

Mr. Stevens' face had phosphor-based makeup applied to it, which made his face appear to human observers or conventional cameras as having a blue glow. The reason Mr. Stevens' face appears in these three images in its natural skin color, without blue glow, is because these images are not from conventional cameras. They are Contour Program Skin Texture output files. But for the MOVA Contour system and methods and the copyrighted Contour Program, it would not be possible to capture and record Mr. Stevens's natural skin color.

COMPLAINT Case No.:

109. The two photographs below are stills from a video clip in the "Beauty of a Tale" featurette that shows three Skin Texture output files from MOVA Contour systems and methods and the copyrighted Contour Program. As detailed in the previous paragraph, to human observers and conventional cameras, Mr. Stevens' natural skin color would not be visible, but rather he would appear as having a blue glow covering his entire face and surrounding skin areas:

110. The derivative CG image of the Beast above is a retargeting of MOVA Contour Tracking Mesh output files. The Captured Surface and Skin Texture output files were likely also used. For example, the Skin Texture could be used to locate Mr. Stevens's "eyelines" (the direction his eyes are looking), the look of his eyes and the look of his teeth and tongue when his mouth is

open. The Makeup Pattern and other Contour Program output files may have also been used. For example, Contour Program output files include frame timing files used to synchronize Mr. Stevens's utterances (e.g. dialog lines and roars) with his facial motion. These images are examples of retargeting to a CG 3D model. A CG 3D model of the Beast's face and head was created and, but for the retargeting from the Contour Program output files, would be immobile and expressionless. But the Contour output files retargeted to the CG 3D model brought the Beast's face to life, retaining the expressiveness, subtlety, and humanity of Mr. Stevens's performance in the CG 3D model.

111. The photograph below is a still from the "Beauty of a Tale" featurette that shows in the lower left Mr. Stevens performing on set in a scene, and the upper left image shows the Skin Texture output file of Mr. Stevens re-performing the facial motions of the same scene in the stolen MOVA Contour rig. On the right, the CG 3D model of the Beast is shown separately from the body. As described previously, the Tracking Mesh output file, and likely other Contour Program output files, retargeted to the 3D model of the Beast's face, bring the CG 3D model of the Beast to life, while retaining the expressiveness, subtlety and humanity of Mr. Stevens's performance:

112. The *still* images of video clips in the prior three photographs do not convey the extraordinary results achieved *in motion*, showing the expressiveness, subtlety and humanity achieved from the MOVA Contour system and methods and the copyrighted Contour Program output files. The video clip sources for the above stills can be found in the "Beauty of a Tale"

1	
_	

promotional video Disney provided to USA Today, which can be viewed here:

 $\underline{https://www.usatoday.com/story/life/entertainthis/2017/05/29/exclusive-video-how-dan-stevens-was-transformed-in-beauty-and-the-beast/102281138/$

- 113. Defendant Disney MPG released *Beauty and the Beast* in domestic theaters on or about March 17, 2017. The film has grossed over \$500 million at the box office in the United States, and over \$1.25 billion globally³⁵.
- 114. Defendant Buena Vista released *Beauty and the Beast* on DVD and Blu-ray, and via digital distribution such as download and streaming services on or about June 6, 2017. Many of the DVD, Blu-ray and digitally distributed versions of *Beauty and the Beast* included the Bonus Featurette entitled "A Beauty of a Tale" that showed how the MOVA Contour system was used in the creation of the Beast, including Contour Program output files. Disney also distributed "Beauty of a Tale" showing how MOVA Contour was used, including Contour Program output files as a promotion for the DVD, Blu-ray, and digital distribution release on USA Today's website, where it is publicly available for streaming over the Internet. Disney has earned over \$5 million on DVD, Blu-ray, and digital distribution as of the date of this complaint. Buena Vista also distributed *Beauty and the Beast* across a wide range of other distribution means, such as on airplanes, in hotels, through cable and satellite television services, *etc*.

FIRST CAUSE OF ACTION: COPYRIGHT INFRINGEMENT (DEFENDANTS DISNEY COMPANY, DISNEY MPG, AND MARVEL)

- 115. Plaintiffs reallege and incorporate each and every allegation contained in the paragraphs above with the same force and effect as if said allegations were fully set forth herein.
- 116. At all material times, Plaintiff Rearden Mova was and is the owner of United States Copyright Registration No. TXu001977151for the MOVA Contour computer program ("Contour Program").
- 117. The authors of the Contour Program created programming that performs several operations. Some of the Contour Program controls the Contour apparatus, including processing

^{35 &}lt;u>http://www.boxofficemojo.com/movies/?id=beautyandthebeast2017.htm.</u>

³⁶ Truitt, op. cit.

Case No.:

images from the two pluralities of Contour cameras. Some of the Contour Program operates prior to a facial capture session to prepare and calibrate the Contour system, some of the Contour Program operates in real-time during a live facial capture, and some of the Contour Program operates after the facial capture. The Contour Program produces several types of output files, some of which are used by the Contour Program itself for further processing, and some of which are used for driving a CG face in a movie or video game. The Contour Program output files include:

- (a) the output of the first plurality of cameras called herein the "**Skin Texture**". Displayed, this output file looks like normal skin and facial features of the performer from multiple angles, largely without visible makeup.
- (b) the output of the second plurality of cameras called herein the "Makeup Pattern". Displayed, this output file looks like a random pattern of green or blue largely without showing the performer's skin or other facial features (e.g. eyes or mouth).
- (c) the Contour Program uses the Makeup Pattern output files to compute a high-resolution 3D surface that moves in the shape of the performer's skin with sub-millimeter precision. This output file is called herein the "Captured Surface" and, rendered on a display, it looks like a 3D bust of the performer's skin in motion.
- (d) the Contour Program uses the Makeup Pattern output files to compute a high-resolution 3D mesh that tracks 3D points on the skin of the performer, as the skin moves from frame-to-frame. This output file is called herein the "**Tracking Mesh**" and, rendered on a display, it looks like a 3D mesh that exactly follows the movement, stretching and wrinkling the skin as the performer moves their face. The Tracking Mesh tracks the subtleties of the performer's facial motion with sub-millimeter precision.
- (e) the Contour Program produces other output files associated with the facial motion capture session, for example, timing files that can be used to synchronize an audio recording of the performer with facial capture of the performer.

All of Contour Program output files, including Skin Texture, Makeup Pattern, Captured Surface, and Tracking Mesh output files, were fixed in a tangible medium of expression when their embodiments were stored in non-volatile computer memory and/or media such as CD, CD-R, DVD or Blu-ray COMPLAINT

disks from which they may be perceived, reproduced, or otherwise communicated for a period of more than transitory duration.

- 118. The Contour Program performs substantially all of the operations required to produce the Contour Program output files, including Skin Texture, Makeup Pattern, Captured Surface, and Tracking Mesh output files. Given identical facial motion capture inputs, the Contour Program will produce identical output files. Accordingly, the authors of the Contour Program are the authors of the Contour Program output files, and these output files are subject to the copyright in the Contour Program owned by Rearden Mova.
- 119. It follows that at all material times Plaintiff Rearden Mova owned the exclusive right to reproduce, distribute copies of, perform, and display the Contour Program output files including Skin Texture, Makeup Pattern, Captured Surface, and Tracking Mesh output files; to make derivative works based upon Contour Program Skin Texture, Makeup Pattern, Captured Surface and Tracking Mesh output files; and to reproduce, distribute, perform, and display the derivative works.
- 120. At all material times, defendant Disney Company dominated and controlled defendants Disney MPG, Buena Vista, and Marvel, and had a substantial and continuing connection with them with respect to the infringing acts alleged herein.
- 121. At all material times, defendant Disney MPG had the right and ability to supervise and control the infringing conduct alleged herein, including but not limited to all infringing acts of DD3 and defendant Marvel, and had an obvious and direct financial interest in the exploitation of Rearden Mova's copyrighted works.
- 122. Defendant Disney MPG, either alone or in concert with an entity subject to its supervision and control, including but not limited to defendant Marvel, contracted with DD3 to produce Contour Program output files including Skin Texture, Makeup Pattern, Captured Surface and Tracking Mesh output files, using the MOVA Contour facial motion capture system and methods and the MOVA Contour Program for Disney MPG's financial benefit in the production of the feature films *Guardians of the Galaxy* and *Avengers: Age of Ultron*.
- 123. Defendant Disney MPG, either alone or in concert with an entity subject to its supervision and control, including but not limited to DD3 and/or defendant Marvel, prepared at least COMPLAINT Case No.:

16

17

18

19

20

21

22

23

24

25

26

27

1	one CG character whose face was derived from some or all of the Contour Program output files
2	including the Skin Texture, Makeup Pattern, Captured Surface, and Tracking Mesh output files, for
3	insertion into its motion pictures, including but not limited to the character of Thanos in Guardians
4	of the Galaxy and Avengers: Age of Ultron. These CG characters were and are original "audiovisual
5	works" within the meaning of 17 U.S.C. § 101, which were fixed in a tangible medium of expression
6	when their embodiments were stored in non-volatile computer memory and/or media such as CD,
7	CD-R, DVD or Blu-ray disks from which they may be perceived, reproduced, or otherwise
8	communicated for a period of more than transitory duration. The CG characters incorporate some or
9	all Contour Program output files including Skin Texture, Makeup Pattern, Captured Surface, and
10	Tracking Mesh output files in their entireties, and the MOVA output files are wholly and indivisibly
11	merged in the derivative CG characters.
12	124. Consequently, the CG characters prepared by Disney MPG, either alone or in concert
13	with an entity subject to its supervision and control, including but not limited to DD3 and/or
14	defendant Marvel, which were derivative of Contour Program output files including some or all of
15	the Skin Texture, Makeup Pattern, Captured Surface, and Tracking Mesh output files, constitute

- "derivative works" as that term is defined in 17 U.S.C. § 101 prepared in violation of Rearden Mova's exclusive rights under 17 U.S.C. § 106 (2).
- 125. On information and belief, while preparing derivative works based on some or all of the Contour Program output files including Skin Texture, Makeup Pattern, Captured Surface, and Tracking Mesh output files, for the feature films Guardians of the Galaxy and Avengers: Age of *Ultron*, Disney MPG, either alone or in concert with an entity subject to its supervision and control, including but not limited to DD3 and/or defendant Marvel, reproduced, distributed, performed. and/or displayed copies of some or all of the Contour Program output files including Skin Texture, Makeup Pattern, Captured Surface, and Tracking Mesh output files, in violation of Rearden Mova's exclusive rights under 17 U.S.C. § 106 (1), (3), (4) and (5).
- 126. Disney MPG reproduced the finished Guardians of the Galaxy and Avengers: Age of *Ultron* films containing CG character derivative works prepared based on some or all of the Contour Program output files including Skin Texture, Makeup Pattern, Captured Surface, and Tracking Mesh **COMPLAINT** Case No.:

COMPLAINT Case No.:

output files, and distributed the film on hard drives, by digital satellite transmission, and/or via other media for performance and display in motion picture theaters throughout the United States in violation of Rearden Mova's exclusive rights under 17 U.S.C. § 106(1), (3), (4) and (5).

- 127. Buena Vista reproduced the finished *Guardians of the Galaxy* and *Avengers: Age of Ultron* films containing derivative works prepared based on some or all of the Contour Program output files including Skin Texture, Makeup Pattern, Captured Surface, and Tracking Mesh output files, and distributed the film on DVDs and Blu-rays for performance and display by consumers throughout the United States in violation of Rearden Mova's exclusive rights under 17 U.S.C. § 106(1), (3), (4) and (5).
- 128. None of Defendants Disney Company, Disney MPG, and Buena Vista, nor any other entities with which they acted in concert and subject to their supervision or control, including but not limited to DD3 and/or defendant Marvel, sought or received authorization from Rearden Mova to use any of the Contour Program output files including Skin Texture, Makeup Pattern, Captured Surface and Tracking Mesh output files to prepare derivative works to be used in the feature films *Guardians of the Galaxy* and *Avengers: Age of Ultron*, or to reproduce, distribute, perform or display such derivative works.
- 129. The acts of infringement by Disney MPG, either alone or in concert with an entity subject to its supervision and control, including but not limited to DD3 and/or defendant Marvel were, and are, willful, intentional, purposeful and knowing, in that Disney MPG, either alone or in concert with entities subject to its supervision and control, including but not limited to DD3 and/or Marvel, at all material times had actual knowledge that the copyright in the Contour Program has been, and is, owned by Rearden Mova as successor-in-interest to its original author and claimant, or was in reckless disregard of or willful blindness to Rearden Mova's copyright, and has acted, and continues to act, in knowing disregard of and indifference to the rights of Rearden Mova.
- 130. Defendants Disney Company, Disney MPG, Buena Vista, and Marvel are liable for each act of direct and actively induced copyright infringement alleged above because they had actual knowledge of the acts of infringement, personally and actively directed and participated in such acts of infringement, and financially benefitted from such acts of infringement.

131. Rearden Mova has been harmed as the direct and proximate result of the foregoing acts of copyright infringement, including both financial and irreparable harm that has no adequate remedy at law. Plaintiffs are entitled to injunctive relief, actual damages, profits of the infringer(s), and all such other remedies as may be available under the Copyright Act.

SECOND CAUSE OF ACTION: COPYRIGHT INFRINGEMENT (DEFENDANTS DISNEY COMPANY, DISNEY MPG, BUENA VISTA, AND MANDEVILLE)

- 132. Plaintiffs reallege and incorporate each and every allegation contained in the paragraphs above with the same force and effect as if said allegations were fully set forth herein.
- 133. At all material times, Plaintiff Rearden Mova was and is the owner of United States Copyright Registration No. TXu001977151 for the MOVA Contour computer program ("Contour Program").
- operations. Some of the Contour Program controls the Contour apparatus, including processing images from the two pluralities of Contour cameras. Some of the Contour Program operates prior to a facial capture session to prepare and calibrate the Contour system, some of the Contour Program operates in real-time during a live facial capture, and some of the Contour Program operates after the facial capture. The Contour Program produces several types of output files, some of which are used by the Contour Program itself for further processing, and some of which are used for driving a CG face in a movie or video game. The Contour Program output files include:
 - (a) the output of the first plurality of cameras called herein the "**Skin Texture**". Displayed, this output file looks like normal skin and facial features of the performer from multiple angles, largely without visible makeup.
 - (b) the output of the second plurality of cameras called herein the "Makeup Pattern". Displayed, this output file looks like a random pattern of green or blue largely without showing the performer's skin or other facial features (e.g. eyes or mouth).
 - (c) the Contour Program uses the Makeup Pattern output files to compute a high-resolution 3D surface that moves in the shape of the performer's skin with sub-millimeter

COMPLAINT Case No.:

precision. This output file is called herein the "o	Captured Surface"	and, rendered on a
display, it looks like a 3D bust of the performer	's skin in motion.	

- (d) the Contour Program uses the Makeup Pattern output files to compute a high-resolution 3D mesh that tracks 3D points on the skin of the performer, as the skin moves from frame-to-frame. This output file is called herein the "**Tracking Mesh**" and, rendered on a display, it looks like a 3D mesh that exactly follows the movement, stretching and wrinkling the skin as the performer moves their face. The Tracking Mesh tracks the subtleties of the performer's facial motion with sub-millimeter precision.
- (e) the Contour Program produces other output files associated with the facial motion capture session, for example, timing files that can be used to synchronize an audio recording of the performer with facial capture of the performer.

All of Contour Program output files, including Skin Texture, Makeup Pattern, Captured Surface, and Tracking Mesh output files, were fixed in a tangible medium of expression when their embodiments were stored in non-volatile computer memory and/or media such as CD, CD-R, DVD or Blu-ray disks from which they may be perceived, reproduced, or otherwise communicated for a period of more than transitory duration.

- 135. The Contour Program performs substantially all of the operations required to produce the Contour Program output files, including Skin Texture, Makeup Pattern, Captured Surface, and Tracking Mesh output files. Given identical facial motion capture inputs, the Contour Program will produce identical output files. Accordingly, the authors of the Contour Program are the authors Contour Program output files, and these output files are subject to copyright in the Contour Program owned by Rearden Mova.
- 136. It follows that at all material times Plaintiff Rearden Mova owned the exclusive right to reproduce, distribute copies of, perform, and display the Contour Program output files including Skin Texture, Makeup Pattern, Captured Surface, and Tracking Mesh output files; to make derivative works based upon Contour Program Skin Texture, Makeup Pattern, Captured Surface and Tracking Mesh output files; and to reproduce, distribute, perform, and display the derivative works.

COMPLAI Case No.:

- 137. At all material times, defendant Disney Company dominated and controlled defendants Disney MPG, Buena Vista, and had a substantial and continuing connection with them with respect to the infringing acts alleged herein.
- 138. At all material times, defendant Disney MPG had the right and ability to supervise and control the infringing conduct alleged herein, including but not limited to all infringing acts of DD3 and/or defendant Mandeville, and had an obvious and direct financial interest in the exploitation of Rearden Mova's copyrighted works.
- 139. Defendant Disney MPG, either alone or in concert with an entity subject to its supervision and control, including but not limited to defendant Mandeville, contracted with DD3 to produce Contour Program output files including Skin Texture, Makeup Pattern, Captured Surface and Tracking Mesh output files, using the MOVA Contour facial motion capture system and methods and the MOVA Contour Program for Disney MPG's financial benefit in the production of the feature film *Beauty and the Beast*.
- 140. Defendant Disney MPG, either alone or in concert with an entity subject to its supervision and control, including but not limited to DD3 and/or defendant Mandeville, prepared at least one CG character whose face was derived from some or all of the Contour Program output files including the Skin Texture, Makeup Pattern, Captured Surface, and Tracking Mesh output files, for insertion into its motion pictures, including but not limited to the character the Beast in *Beauty and the Beast*. These CG characters were and are original "audiovisual works" within the meaning of 17 U.S.C. § 101, which were fixed in a tangible medium of expression when their embodiments were stored in non-volatile computer memory and/or media such as CD, CD-R, DVD or Blu-ray disks from which they may be perceived, reproduced, or otherwise communicated for a period of more than transitory duration. The CG characters incorporate some or all Contour Program output files including Skin Texture, Makeup Pattern, Captured Surface, and Tracking Mesh output files in their entireties, and the MOVA works are wholly and indivisibly merged in the CG characters.
- 141. Consequently, the CG characters prepared by Disney MPG, either alone or in concert with an entity subject to its supervision and control, including but not limited to DD3 and/or defendant Mandeville, based on Contour Program output files including some or all of the Skin COMPLAINT

Case No.:

Texture, Makeup Pattern, Captured Surface, and Tracking Mesh output files, constitute "derivative
works" as that term is defined in 17 U.S.C. § 101 prepared in violation of Rearden Mova's exclusive
rights under 17 U.S.C. § 106 (2).

- 142. On information and belief, while preparing derivative works based on some or all of the Contour Program output files including Skin Texture, Makeup Pattern, Captured Surface, and Tracking Mesh output files, for the feature film *Beauty and the Beast*, Disney MPG, either alone or in concert with an entity subject to its supervision and control, including but not limited to DD3 and defendant Mandeville, reproduced, distributed, performed, and/or displayed copies of some or all of the Contour Program output files including Skin Texture, Makeup Pattern, Captured Surface and Tracking Mesh output files, in violation of Rearden Mova's exclusive rights under 17 U.S.C. § 106 (1), (3), (4) and (5).
- 143. Disney MPG reproduced the finished *Beauty and the Beast* film containing derivative works prepared based on some or all of the Contour Program output files including Skin Texture, Makeup Pattern, Captured Surface and Tracking Mesh output files, and distributed the film on hard drives, by digital satellite transmission, and/or via other media for performance and display in motion picture theaters throughout the United States in violation of Rearden Mova's exclusive rights under 17 U.S.C. § 106(1), (3), (4) and (5).
- 144. Buena Vista reproduced the finished *Beauty and the Beast* film containing derivative works prepared based on some or all of the Contour Program output files including Skin Texture, Makeup Pattern, Captured Surface and Tracking Mesh output files, and distributed the film on DVDs and Blu-rays for performance and display by consumers throughout the United States in violation of Rearden Mova's exclusive rights under 17 U.S.C. § 106(1), (3), (4) and (5).
- 145. None of Defendants Disney Company, Disney MPG, and Buena Vista, nor any other entities with which they acted in concert and subject to their supervision or control, including but not limited to DD3 and/or defendant Mandeville, sought or received authorization from Rearden Mova to use any of the Contour Program output files including Skin Texture, Makeup Pattern, Captured Surface and Tracking Mesh output files to prepare derivative works to be used in the feature film *Beauty and the Beast*, or to reproduce, distribute, perform or display such derivative works. COMPLAINT

- 146. The acts of infringement by Disney MPG, either alone or in concert with an entity subject to its supervision and control, including but not limited to DD3 and/or defendant Mandeville were, and are, willful, intentional, purposeful and knowing, in that Disney MPG, either alone or in concert with entities subject to its supervision and control, including but not limited to DD3 and/or defendant Mandeville, at all material times had actual knowledge that the copyright in the Contour Program has been, and is, owned by Rearden Mova as successor-in-interest to its original author and claimant, or was in reckless disregard of or willful blindness to Rearden Mova's copyrights, and has acted, and continues to act, in knowing disregard of and indifference to the rights of Rearden Mova.
- 147. Defendants Disney Company, Disney MPG, Buena Vista, and Mandeville are liable for each act of direct and actively induced copyright infringement alleged above because they had actual knowledge of the acts of infringement, personally and actively directed and participated in such acts of infringement, and financially benefitted from such acts of infringement.
- 148. Rearden Mova has been harmed as the direct and proximate result of the foregoing acts of copyright infringement, including both financial and irreparable harm that has no adequate remedy at law. Plaintiffs are entitled to injunctive relief, actual damages, profits of the infringer(s), and all such other remedies as may be available under the Copyright Act.

THIRD CAUSE OF ACTION: INFRINGEMENT OF U.S. PATENT NO. 7,605,861 (DEFENDANT DISNEY MPG)

- 149. Plaintiffs reallege and incorporate each and every allegation contained in the paragraphs above with the same force and effect as if said allegations were fully set forth herein.
- 150. Plaintiff Rearden Mova LLC is the owner by assignment of U.S. Patent No. 7,605,861 (the '861 Patent), entitled "Apparatus and Method for Performing Motion Capture Using Shutter Synchronization," issued on October 20, 2009.
- 151. The '861 Patent generally teaches a system and methods of performing motion capture using shutter synchronization and/or using phosphor-based paint. For example, a method for mixing phosphor-based makeup with a makeup base, applying the mixture on surface regions of a motion capture subject, strobing a light source on and off, and strobing camera shutters synchronously with the strobing light source to perform motion capture.

COMPLAINT Case No.:

- 152. The MOVA Contour facial motion capture apparatus and methods, which were conceived and developed by Rearden, and taken, offered and used by DD3, are commercial embodiments of the systems and methods claimed in the '861 Patent.
- 153. By way of example, and not limitation, claim 1 of the '861 Patent recites the following limitations:

A method comprising:

applying phosphorescent paint to regions of a performer's face and/or body;

strobing a light source on and off, the light source charging the phosphorescent paint when on; and

strobing the shutters of a first plurality of cameras synchronously with the strobing of the light source to capture sequences of images of the phosphorescent paint ("glow frames") as the performer moves or changes facial expressions during a performance, wherein the shutters are open when the light source is off and the shutters are closed when the light source is on.

- 154. The MOVA Contour facial motion capture method includes a step in which phosphorbased paint is applied to regions of a performer's face.
- 155. The MOVA Contour facial motion capture method has white and black light sources. The white light source is alternately strobed on and off, charging the phosphorescent paint when on.
- 156. The MOVA Contour facial motion capture technology includes a step in which cameras with shutters controlled by computers and the MOVA Contour computer program, which open and close synchronously (strobing). The shutters open when the white light sources are off and the black light sources are on, thereby capturing sequences of images of the phosphorescent paint ("glow frames") as the performer changes facial expressions during a performance.
- 157. At all material times, defendant Disney MPG had the right and ability to supervise the infringing conduct alleged herein, including but not limited to the infringing acts of defendants Marvel and Mandeville, and had an obvious and direct financial interest in the exploitation of Rearden Mova's patented works.
- 158. Defendant Disney MPG, acting either alone or through entities subject to its supervision and control, contracted with DD3 to use the patented MOVA Contour facial motion

capture system and methods for facial motion capture in *Guardians of the Galaxy* and *Avengers: Age of Ultron* without authorization. On information and belief, the contract provided for a financial payment to DD3.

- 159. Defendant Disney MPG, acting either alone or through entities subject to its supervision and control, contracted with DD3 to use the patented MOVA Contour facial motion capture system and methods for facial motion capture in *Beauty and the Beast* without authorization. On information and belief, the contract provided for a financial payment to DD3.
- 160. Each instance of DD3's unauthorized use of the MOVA Contour facial motion capture system for facial motion capture in the *Guardians of the Galaxy*, *Avengers: Age of Ultron*, and *Beauty and the Beast* motion pictures in the performance of its contract with Disney MPG, or with entities subject to Disney MPG's supervision and control, constitutes an act of direct infringement of one or more claims of the '861 Patent.
- 161. At all material times, Disney MPG had actual knowledge of, or was willfully blind to, the '861 Patent because it had performed an intellectual property due diligence with Rearden and worked with Rearden to use the MOVA Contour facial motion capture system for facial motion capture in *TRON: Legacy* (2010), *Pirates of the Caribbean: On Stranger Tides* (2011), *John Carter* (2012), and *The Avengers* (2012). Based upon its intellectual property due diligence, Disney MPG had actual knowledge that Rearden regarded the MOVA Contour facial motion capture system and methods to be embodiments of the claims of the '861 Patent.
- 162. And on information and belief, Disney MPG had actual knowledge of, or was willfully blind to, the '861 Patent because it had performed an intellectual property due diligence with DD3 prior to contracting with DD3 to use the MOVA Contour facial motion capture system for facial motion capture in *Guardians of the Galaxy* (2014), *Avengers: Age of Ultron* (2015), and *Beauty and the Beast* (2017). A competent intellectual property due diligence would have included an examination of the public record of assignments and/or attorney of record of the '861 Patent, which would have revealed that DD3 did not have a license from any entity that could have owned the MOVA Contour facial motion capture system.

- regarded the MOVA Contour facial motion capture system and methods to be embodiments of the claims of the '861 Patent, and knowledge of or willful blindness to DD3's lack of authorization from any entity that could have owned the MOVA Contour facial motion capture system, confirm Disney MPG's specific intent to induce DD3 to infringe the '861 Patent by contracting with DD3 to use the MOVA Contour facial motion capture system for facial motion capture in the *Guardians of the Galaxy*, *Avengers: Age of Ultron*, and *Beauty and the Beast* motion pictures without authorization.
- 164. Consequently, Disney MPG actively induced each instance of DD3's use of the MOVA Contour facial motion capture system for facial motion capture in the *Guardians of the Galaxy*, *Avengers: Age of Ultron*, and *Beauty and the Beast* motion pictures without authorization in the performance of its contract with Disney MPG, or with entities subject to Disney MPG's supervision and control. Disney MPG's active inducement of direct infringement by DD3 constitutes acts of infringement of the '861 Patent under 35 U.S.C. § 271(b).
- 165. Defendant Disney MPG is liable to Plaintiffs for damages adequate to compensate for Disney MPG's direct and actively-induced infringements, in an amount to be proved at trial but in no event less than a reasonable royalty for the use made of Plaintiffs' invention by Disney MPG under 35 U.S.C. § 284.
- 166. In addition, defendant Disney MPG's direct and actively-induced infringements have caused Plaintiffs irreparable harm that is not compensable by monetary damages, and therefore Plaintiffs are entitled to injunctive relief under 35 U.S.C. § 283.
- 167. Disney MPG's direct and actively-induced infringements constitute willful, egregious misconduct, and consequently Plaintiffs are entitled to a discretionary increase of their damages award up to three times the amount found or assessed, costs, and attorney's fees under 35 U.S.C. § 284.
- 168. Finally, based on the foregoing facts, Plaintiffs request that this Court declare this an exceptional case, and award Plaintiffs their costs and attorney's fees under 35 U.S.C. § 285.

1 2	FOURTH CAUSE OF ACTION: INFRINGEMENT OF U.S. PATENT 7,567,293 (DEFENDANT DISNEY MPG)
3	169. Plaintiffs reallege and incorporate each and every allegation contained in the
4	paragraphs above with the same force and effect as if said allegations were fully set forth herein.
5	170. Plaintiff Rearden Mova LLC is the owner by assignment of the U.S. Patent 7,567,293
6	(the '293 Patent), entitled "System and Method for Performing Motion Capture by Strobing a
7	Fluorescent Lamp," issued on July 28, 2009.
8	171. The '293 Patent teaches systems and methods for performing motion capture using
9	fluorescent lamps. For example, capturing motion by generating synchronization signals, strobing
10	fluorescent lamps in response to the synchronization signals to charge phosphorescent makeup or
11	dye, and strobing camera shutters synchronously with the lamps or light source.
12	172. The MOVA Contour facial motion capture apparatus and methods, which were
13	conceived and developed by Rearden, and taken, offered and used by DD3, are commercial
14	embodiments of the systems and methods claimed in the '293 Patent.
15	173. By way of example, and not limitation, claim 1 of the '293 Patent recites the
16	following limitations:
17	A system comprising:
18	a synchronization signal generator to generate one or more synchronization signals;
19	one or more fluorescent lamps configured to strobe on and off
2021	responsive to a first one of the one or more synchronization signals, the fluorescent lamps illuminating makeup, markers, paint or dye applied to a subject for a motion capture session; and
22	a first plurality of cameras having shutters strobed synchronously
23	with the strobing of the light source to capture sequences of images of the makeup, markers, paint or dye as the subject moves or
24	changes facial expressions during a performance, wherein the shutters are open when the light source is off and the shutters are closed when the light source is on.
25	174. The MOVA Contour facial motion capture system includes a synchronization signal
2627	generator to generate synchronization signals.
28	
	COMPLAINT

- 175. The MOVA Contour facial motion capture system includes florescent lamps configured to strobe on and off responsive to the synchronization signals. The florescent lamps illuminate makeup, markers, paint or dye applied to the subject for a motion capture session.
- 176. The MOVA Contour facial motion capture system has cameras with shutters that are controlled by the MOVA Contour Program. The shutters are strobed continuously with the strobing of the fluorescent lamps to capture sequences of images of the makeup, markers, paint or dye as the subject moves or changes facial expressions during a performance.
- 177. The MOVA Contour computer program signals the cameras to open their shutters when the white fluorescent light source is off and close their shutters when the white fluorescent light source is on.
- 178. At all material times, defendant Disney MPG had the right and ability to supervise the infringing conduct alleged herein, including but not limited to the infringing acts of defendants Marvel and Mandeville, and had an obvious and direct financial interest in the exploitation of Rearden's patented works.
- 179. Defendant Disney MPG, acting either alone or through entities subject to its supervision and control, contracted with DD3 to use the patented MOVA Contour facial motion capture system and methods for facial motion capture in *Guardians of the Galaxy* and *Avengers: Age of Ultron* without authorization. On information and belief, the contract provided for a financial payment to DD3.
- 180. Defendant Disney MPG, acting either alone or through entities subject to its supervision and control, contracted with DD3 to use the patented MOVA Contour facial motion capture system and methods for facial motion capture in *Beauty and the Beast* without authorization. On information and belief, the contract provided for a financial payment to DD3.
- 181. Each instance of DD3's unauthorized use of the MOVA Contour facial motion capture system for facial motion capture in the *Guardians of the Galaxy*, *Avengers: Age of Ultron*, and *Beauty and the Beast* motion pictures in the performance of its contract with Disney MPG, or with entities subject to Disney MPG's supervision and control, constitutes an act of direct infringement of one or more claims of the '293 Patent.

COMPLAINT Case No.:

- 182. At all material times, Disney MPG had actual knowledge of, or was willfully blind to, the '293 Patent because it had performed an intellectual property due diligence with Rearden and worked with Rearden to use the MOVA Contour facial motion capture system for facial motion capture in *TRON: Legacy* (2010), *Pirates of the Caribbean: On Stranger Tides* (2011), *John Carter* (2012), and *The Avengers* (2012). Based upon its intellectual property due diligence, Disney MPG had actual knowledge that Rearden regarded the MOVA Contour facial motion capture system and methods to be embodiments of the claims of the '293 Patent.
- 183. And on information and belief, Disney MPG had actual knowledge of, or was willfully blind to, the '293 Patent because it had performed an intellectual property due diligence with DD3 prior to contracting with DD3 to use the MOVA Contour facial motion capture system for facial motion capture in *Guardians of the Galaxy* (2014), *Avengers: Age of Ultron* (2015), and *Beauty and the Beast* (2017). A competent intellectual property due diligence would have included an examination of the public record of assignments of the '293 Patent, which would have revealed that DD3 did not have authorization from any entity that could have owned the MOVA Contour facial motion capture system.
- 184. Disney MPG's actual knowledge of the '293 Patent, actual knowledge that Rearden regarded the MOVA Contour facial motion capture system and methods to be embodiments of the claims of the '293 Patent, and knowledge of or willful blindness to DD3's lack of a license from any entity that could have owned the MOVA Contour facial motion capture system, confirm Disney MPG's specific intent to induce DD3 to infringe the '293 Patent by contracting with DD3 to use the MOVA Contour facial motion capture system for facial motion capture in the *Guardians of the Galaxy*, *Avengers: Age of Ultron*, and *Beauty and the Beast* motion pictures without authorization.
- 185. Consequently, Disney MPG actively induced each instance of DD3's use of the MOVA Contour facial motion capture system for facial motion capture in the *Guardians of the Galaxy*, *Avengers: Age of Ultron*, and *Beauty and the Beast* motion pictures without authorization in the performance of its contract with Disney MPG, or with entities subject to Disney MPG's supervision and control. Disney MPG's active inducement of direct infringement by DD3 constitutes acts of infringement of the '293 Patent under 35 U.S.C. § 271(b).

COMPLAINT Case No.:

- 186. Defendant Disney MPG is liable to Plaintiffs for damages adequate to compensate for Disney MPG's direct and actively-induced infringements, in an amount to be proved at trial but in no event less than a reasonable royalty for the use made of Plaintiffs' invention by Disney MPG under 35 U.S.C. § 284.
- 187. In addition, defendant Disney MPG's direct and actively-induced infringements have caused Plaintiffs irreparable harm that is not compensable by monetary damages, and therefore Plaintiffs are entitled to injunctive relief under 35 U.S.C. § 283.
- 188. Disney MPG's direct and actively-induced infringements constitute willful, egregious misconduct, and consequently Plaintiffs are entitled to a discretionary increase of their damages award up to three times the amount found or assessed, costs, and attorney's fees under 35 U.S.C. § 284.
- 189. Finally, based on the foregoing facts, Plaintiffs request that this Court declare this an exceptional case, and award Plaintiffs their costs and attorney's fees under 35 U.S.C. § 285.

FIFTH CAUSE OF ACTION: INFRINGEMENT OF U.S. PATENT NO. 7,548,272 (DEFENDANT DISNEY MPG)

- 190. Plaintiffs reallege and incorporate each and every allegation contained in the paragraphs above with the same force and effect as if said allegations were fully set forth herein.
- 191. Plaintiff Rearden Mova LLC is the owner by assignment of U.S. Patent No. 7,548,272 (the '272 Patent), entitled "System and Method for Performing Motion Capture Using Phosphor Application Techniques," issued on June 16, 2009.
- 192. The '272 Patent teaches an improved apparatus and method for performing motion capture using phosphor application techniques. For example, a method for mixing phosphorescent makeup with a makeup base, applying the mixture on surface regions of a motion capture subject, strobing light source on and off, and strobing camera shutters synchronously with the strobing light source to perform motion capture.
- 193. The MOVA Contour facial motion capture apparatus and methods, which were conceived and developed by Rearden, and taken, offered and used by DD3, are commercial embodiments of the systems and methods claimed in the '272 Patent.

COMPLAINT Case No.:

1	194. By way of example, and not limitation, claim 1 of the '272 Patent recites the		
2	following limitations:		
3	A method for performing motion capture comprising:		
4	mixing phosphor with makeup to create a phosphor-makeup mixture;		
5 6	applying the phosphor-makeup mixture to surface regions of a motion capture subject;		
7 8	strobing a light source on and off, the light source charging phosphor within the phosphor-makeup mixture when on; and		
9	strobing the shutters of a first plurality of cameras synchronously with the strobing of the light source to capture sequences of images of the phosphor-makeup mixture as the subject moves or changes		
1011	facial expressions during a performance, wherein the shutters are open when the light source is off and the shutters are closed when the light source is on.		
12	195. The MOVA Contour facial motion capture method includes a step in which phosphor		
13	is mixed with makeup to create a phosphor-makeup mixture.		
14	196. The MOVA Contour facial motion capture method includes a step in which the		
15	phosphor-makeup mixture is applied to surface regions of the motion capture subject.		
16	197. The MOVA Contour facial motion capture technology includes a step in which a light		
17	source is strobed on and off, the light source charging phosphor within the phosphor-makeup mixture		
18	when on.		
19	198. The MOVA Contour facial motion capture technology includes a step in which		
20	cameras with shutters are controlled by computers and the MOVA Contour Program, which opens		
21	the shutters when the white light source is off (leaving only the black light source on) which capture		
22	sequences of images of the phosphor-makeup mixture as the subject moves or changes facial		
23	expressions during a performance, and the shutters are closed when the white light source is on.		
24	199. At all material times, defendant Disney MPG had the right and ability to supervise the		
25	infringing conduct alleged herein, including but not limited to the infringing acts of defendants		
26	Marvel and Mandeville, and had an obvious and direct financial interest in the exploitation of		
27	Rearden's patented works.		
28			

200. Defendant Disney MPG, acting either alone or through entities subject to its supervision and control, contracted with DD3 to use the patented MOVA Contour facial motion capture system and methods for facial motion capture in *Guardians of the Galaxy* and *Avengers: Age of Ultron* without authorization. On information and belief, the contract provided for a financial payment to DD3.

- 201. Defendant Disney MPG, acting either alone or through entities subject to its supervision and control, contracted with DD3 to use the patented MOVA Contour facial motion capture system and methods for facial motion capture in *Beauty and the Beast* without authorization. On information and belief, the contract provided for a financial payment to DD3.
- 202. Each instance of DD3's unauthorized use of the MOVA Contour facial motion capture system for facial motion capture in the *Guardians of the Galaxy*, *Avengers: Age of Ultron*, and *Beauty and the Beast* motion pictures in the performance of its contract with Disney MPG, or with entities subject to Disney MPG's supervision and control, constitutes an act of direct infringement of one or more claims of the '272 Patent.
- 203. At all material times, Disney MPG had actual knowledge of, or was willfully blind to, the '272 Patent because it had performed an intellectual property due diligence with Rearden and worked with Rearden to use the MOVA Contour facial motion capture system for facial motion capture in *TRON: Legacy* (2010), *Pirates of the Caribbean: On Stranger Tides* (2011), *John Carter* (2012), and *The Avengers* (2012). Based upon its intellectual property due diligence, Disney MPG had actual knowledge that Rearden regarded the MOVA Contour facial motion capture system and methods to be embodiments of the claims of the '272 Patent.
- 204. And on information and belief, Disney MPG had actual knowledge of, or was willfully blind to, the '272 Patent because it had performed an intellectual property due diligence with DD3 prior to contracting with DD3 to use the MOVA Contour facial motion capture system for facial motion capture in *Guardians of the Galaxy* (2014), *Avengers: Age of Ultron* (2015), and *Beauty and the Beast* (2017). A competent intellectual property due diligence would have included an examination of the public record of assignments of the '272 Patent, which would have revealed

3

4

5

6 7

8

9

10 11

12

13 14

15

16

17

18

19 20

21

22 23

24 25

26

27

28

Finally, based on the foregoing facts, Plaintiffs request that this Court declare this an 210. exceptional case, and award Plaintiffs their costs and attorney's fees under 35 U.S.C. § 285.

that DD3 did not have a license from any entity that could have owned the MOVA Contour facial motion capture system.

205. Disney MPG's actual knowledge of the '272 Patent, actual knowledge that Rearden regarded the MOVA Contour facial motion capture system and methods to be embodiments of the claims of the '272 Patent, and knowledge of or willful blindness to DD3's lack of authorization from any entity that could have owned the MOVA Contour facial motion capture system, confirm Disney MPG's specific intent to induce DD3 to infringe the '272 Patent by contracting with DD3 to use the MOVA Contour facial motion capture system for facial motion capture in the Guardians of the Galaxy, Avengers: Age of Ultron, and Beauty and the Beast motion pictures without authorization.

206. Consequently, Disney MPG actively induced each instance of DD3's use of the MOVA Contour facial motion capture system for facial motion capture in the Guardians of the Galaxy, Avengers: Age of Ultron, and Beauty and the Beast motion pictures without authorization in the performance of its contract with Disney MPG. Disney MPG's active inducement of direct infringement by DD3 constitutes acts of infringement of the '272 Patent under 35 U.S.C. § 271(b).

207. Defendant Disney MPG is liable to Plaintiffs for damages adequate to compensate for Disney MPG's direct and actively-induced infringements, in an amount to be proved at trial but in no event less than a reasonable royalty for the use made of Plaintiffs' invention by Disney MPG under 35 U.S.C. § 284.

208. In addition, defendant Disney MPG's direct and actively-induced infringements have caused Plaintiffs irreparable harm that is not compensable by monetary damages, and Plaintiffs therefore are entitled to injunctive relief under 35 U.S.C. § 283.

209. Disney MPG's direct and actively-induced infringements constitutes willful, egregious misconduct, and consequently Plaintiffs are entitled to a discretionary increase of their damages award up to three times the amount found or assessed, costs, and attorney's fees under 35 U.S.C. § 284.

1 2		SIXTH CAUSE OF ACTION: INFRINGEMENT OF U.S. PATENT NO. 8,659,668 (DEFENDANT DISNEY MPG)	
3	211.	Plaintiffs reallege and incorporate each and every allegation contained in the	
4	paragraphs at	pove with the same force and effect as if said allegations were fully set forth herein.	
5	212.	Plaintiff Rearden Mova LLC is the owner by assignment of U.S. Patent No. 8,659,668	
6	(the '668 Pate	ent), entitled "Apparatus and Method for Performing Motion Capture Using a Random	
7	Pattern on Capture Surfaces," issued on February 25, 2014.		
8	213.	The '668 Patent claims methods for applying a random pattern to specified regions of	
9	an object, trac	cking the movement of the random pattern, and generating motion data representing the	
10	movement of	the object.	
11	214.	The MOVA Contour facial motion capture apparatus and methods, which were	
12	conceived and	d developed by Rearden, and taken, offered and used by DD3, are commercial	
13	embodiments of the systems and methods claimed in the '668 Patent.		
14	215.	By way of example, and not limitation, claim 1 of the '668 Patent recites the	
15	following limitations:		
16		A method comprising:	
17		applying a random pattern of material to specified regions of a performer's face, body and/or clothing;	
18 19		capturing sequences of images of the random pattern with a first plurality of cameras as the performer moves and/or changes facial expressions during a motion capture session;	
20		correlating the random pattern across two or more images captured	
21		from two or more different cameras to create a 3-dimensional surface of the specified regions of the performer's face, body, and/or clothing;	
22		generating motion data representing the movement of the 3-	
23		dimensional surface across the sequence of images;	
24 25		strobing a light source on and off, the light source charging the random pattern when on; and	
26		strobing the shutters of a first plurality of cameras synchronously with the strobing of the light source to capture the sequences of images of	
27		the random pattern ("glow frames") as the performer moves or changes facial expressions during a performance, wherein the shutters of the first plurality of cameras are open when the light source is off and the	
28		shutters are closed when the light source is on.	
	L COMPLAINT		

COMPLAINT Case No.:

COMPLAINT Case No.:

- 216. The MOVA Contour facial motion capture method includes a step of applying a random pattern of material, a phosphor-makeup mixture, to regions of a performer's face.
- 217. The MOVA Contour facial motion capture method includes a step of capturing sequences of images of the random patterns with cameras as the subject moves and changes facial expressions.
- 218. The MOVA Contour facial motion capture method includes a step of processing by a computer programmed with the MOVA Contour computer program, to correlate the random pattern across images captured by cameras to create a 3-dimensional surface of the performer's face.
- 219. The MOVA Contour facial motion capture method includes a step of processing by a computer programmed with the MOVA Contour Program to generate motion data representing movement of the three dimensional surface across the sequence of images.
- 220. The MOVA Contour facial motion capture method includes a step of strobing white florescent light sources on and off, where the white light sources charge the random pattern of phosphor in the phosphor-makeup mixture.
- 221. The MOVA Contour facial motion capture method includes a step of strobing the shutters of cameras controlled by the MOVA Contour computer program. The shutters are strobed synchronously with the strobing of the light source to capture sequences of images of the random pattern of phosphor in the phosphor-makeup mixture as the performer moves or changes facial expressions during a performance. The shutters are open when the white light source is off, and closed when the light source is on.
- 222. At all material times, defendant Disney MPG had the right and ability to supervise the infringing conduct alleged herein, including but not limited to the infringing acts of defendants Marvel and Mandeville, and had an obvious and direct financial interest in the exploitation of Rearden's patented works.
- 223. Defendant Disney MPG, acting either alone or through entities subject to its supervision and control, contracted with DD3 to use the patented MOVA Contour facial motion capture system and methods for facial motion capture in *Guardians of the Galaxy* and *Avengers: Age*

8

9 10

11 12

13 14

15 16

17 18

19

21

20

22 23

24

25 26

27

28

of Ultron without authorization. On information and belief, the contract provided for a financial payment to DD3.

- 224. Defendant Disney MPG, acting either alone or through entities subject to its supervision and control, contracted with DD3 to use the patented MOVA Contour facial motion capture system and methods for facial motion capture in Beauty and the Beast without authorization. On information and belief, the contract provided for a financial payment to DD3.
- 225. Each instance of DD3's unauthorized use of the MOVA Contour facial motion capture system for facial motion capture in the Guardians of the Galaxy, Avengers: Age of Ultron, and Beauty and the Beast motion pictures in the performance of its contract with Disney MPG, or with entities subject to Disney MPG's supervision and control, constitutes an act of direct infringement of one or more claims of the '668 Patent.
- 226. At all material times, Disney MPG had actual knowledge of, or was willfully blind to, the '668 Patent because it had performed an intellectual property due diligence with Rearden and worked with Rearden to use the MOVA Contour facial motion capture system for facial motion capture in TRON: Legacy (2010), Pirates of the Caribbean: On Stranger Tides (2011), John Carter (2012), and *The Avengers* (2012). Based upon its intellectual property due diligence, Disney MPG had actual knowledge that Rearden regarded the MOVA Contour facial motion capture system and methods to be embodiments of the claims of the '668 Patent.
- 227. And on information and belief, Disney MPG had actual knowledge of, or was willfully blind to, the '668 Patent because it had performed an intellectual property due diligence with DD3 prior to contracting with DD3 to use the MOVA Contour facial motion capture system for facial motion capture in Guardians of the Galaxy (2014), Avengers: Age of Ultron (2015), and Beauty and the Beast (2017). A competent intellectual property due diligence would have included an examination of the public record of assignments of the '668 Patent, which would have revealed that DD3 did not have a license from any entity that could have owned the MOVA Contour facial motion capture system.
- 228. Disney MPG's actual knowledge of the '668 Patent, actual knowledge that Rearden regarded the MOVA Contour facial motion capture system and methods to be embodiments of the **COMPLAINT** Case No.:

1	
2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	

26

27

28

claims of the '668 Patent, and knowledge of or willful blindness to DD3's lack of authorization from any entity that could have owned the MOVA Contour facial motion capture system, confirm Disney MPG's specific intent to induce DD3 to infringe the '668 Patent by contracting with DD3 to use the MOVA Contour facial motion capture system for facial motion capture in the *Guardians of the Galaxy*, *Avengers: Age of Ultron*, and *Beauty and the Beast* motion pictures without authorization.

- 229. Consequently, Disney MPG actively induced each instance of DD3's use of the MOVA Contour facial motion capture system for facial motion capture in the *Guardians of the Galaxy*, *Avengers: Age of Ultron*, and *Beauty and the Beast* motion pictures without authorization in the performance of its contract with Disney MPG, or with entities subject to Disney MPG's supervision and control. Disney MPG's active inducement of direct infringement by DD3 constitutes acts of infringement of the '668 Patent under 35 U.S.C. § 271(b).
- 230. Defendant Disney MPG is liable to Plaintiffs for damages adequate to compensate for Disney MPG's direct and actively-induced infringements, in an amount to be proved at trial but in no event less than a reasonable royalty for the use made of Plaintiffs' invention by Disney MPG under 35 U.S.C. § 284.
- 231. In addition, defendant Disney MPG's direct and actively-induced infringements have caused Plaintiffs irreparable harm that is not compensable by monetary damages, and therefore Plaintiffs are entitled to injunctive relief under 35 U.S.C. § 283.
- 232. Disney MPG's direct and actively-induced infringements constitute willful, egregious misconduct, and consequently Plaintiffs are entitled to a discretionary increase of their damages award up to three times the amount found or assessed, costs, and attorney's fees under 35 U.S.C. § 284.
- 233. Finally, based on the foregoing facts, Plaintiffs request that this Court declare this an exceptional case, and award Plaintiffs their costs and attorney's fees under 35 U.S.C. § 285.

SEVENTH CAUSE OF ACTION: INFRINGEMENT OF U.S. PATENT NO. 8,207,963 (DEFENDANT DISNEY MPG)

234. Plaintiffs reallege and incorporate each and every allegation contained in the paragraphs above with the same force and effect as if said allegations were fully set forth herein. COMPLAINT Case No.:

1	235.	Plaintiff Rearden Mova LLC is the owner by assignment of U.S. Patent No. 8,207,963
2	(the '963 Pate	ent), entitled "System and Method for Performance Motion Capture and Image
3	Reconstruction	on," issued on June 26, 2012.
4	236.	The '963 Patent claims methods for establishing a reference frame and tracking many
5	vertices from	frame to frame through the captured sequence.
6	237.	The MOVA Contour facial motion capture apparatus and methods, which were
7	conceived and	d developed by Rearden, and taken, offered and used by DD3, are commercial
8	embodiments	of the systems and methods claimed in the '963 Patent.
9	238.	By way of example, and not limitation, claim 1 of the '963 Patent recites the
10	following lim	nitations:
11		1. A computer-implemented system for performing motion capture of a subject comprising:
12		a plurality of cameras for capturing a sequence of image frames of the
13 14		subject over a period of time, each frame having a plurality of vertices defining a captured surface of the subject;
15		a computing system for processing the sequence of image frames, the computing system having a memory for storing program code and a processor for processing the program code to perform the operations
16		of:
17		establishing a reference frame having one or more of the plurality of vertices and specifying a location for each of the vertices;
18 19		performing frame-to-frame tracking to identify locations of vertices within an N'th frame based on locations of vertices within an (N-1)'th
20		frame or an earlier frame;
21		performing reference-to-frame tracking to identify locations of vertices within the N'th frame based on the locations of vertices in the reference
22		frame to counter potential drift between the frames;
23		storing the locations of vertices for use in subsequent reconstruction of the motion of the subject; and performing the frame-to-frame and
24		reference-to-frame tracking again using a different set of parameters, the parameters defining a search area for the vertices of each frame wherein multiple correlation passes are performed with the different
25		sets of parameters;
2627		and wherein for passes after the first, the search area is shrunk by using an estimate of the position of a vertex based on the position of nearby vertices that were successfully tracked in the previous passes.
28		

- 239. The MOVA Contour facial motion capture method includes a step of using a plurality of cameras for capturing a sequence of image frames of the subject over a period of time, each frame having a plurality of vertices defining a captured surface of the subject.
- 240. The MOVA Contour facial motion capture method includes a step of using a computing system for processing the sequence of image frames, the computing system having a memory for storing program code and a processor for processing the program code to perform the operations of:
 - (a) establishing a reference frame having one or more of the plurality of vertices and specifying a location for each of the vertices;
 - (b) performing frame-to-frame tracking to identify locations of vertices within an N'th frame based on locations of vertices within an (N-1)'th frame or an earlier frame;
 - (c) performing reference-to-frame tracking to identify locations of vertices within the N'th frame based on the locations of vertices in the reference frame to counter potential drift between the frames;
 - (d) storing the locations of vertices for use in subsequent reconstruction of the motion of the subject; and performing the frame-to-frame and reference-to-frame tracking again using a different set of parameters, the parameters defining a search area for the vertices of each frame wherein multiple correlation passes are performed with the different sets of parameters; and
 - (e) wherein the search area is shrunk by using an estimate of the position of a vertex based on the position of nearby vertices that were successfully tracked in the previous passes.
- 241. At all material times, defendant Disney MPG had the right and ability to supervise the infringing conduct alleged herein, including but not limited to the infringing acts of defendants Marvel and Mandeville, and had an obvious and direct financial interest in the exploitation of Rearden's patented works.
- 242. Defendant Disney MPG, acting either alone or through entities subject to its supervision and control, contracted with DD3 to use the patented MOVA Contour facial motion capture system and methods for facial motion capture in *Guardians of the Galaxy* and *Avengers: Age* COMPLAINT Case No.:

4

8

6

12

11

14

13

15 16

17

18 19

20

22

21

23 24

25

26

27 28

Case No.:

of Ultron without authorization. On information and belief, the contract provided for a financial payment to DD3.

- 243. Defendant Disney MPG, acting either alone or through entities subject to its supervision and control, contracted with DD3 to use the patented MOVA Contour facial motion capture system and methods for facial motion capture in Beauty and the Beast without authorization. On information and belief, the contract provided for a financial payment to DD3.
- 244. Each instance of DD3's unauthorized use of the MOVA Contour facial motion capture system for facial motion capture in the Guardians of the Galaxy, Avengers: Age of Ultron, and Beauty and the Beast motion pictures in the performance of its contract with Disney MPG, or with entities subject to Disney MPG's supervision and control, constitutes an act of direct infringement of one or more claims of the '963 Patent.
- 245. At all material times, Disney MPG had actual knowledge of, or was willfully blind to, the '963 Patent because it had performed an intellectual property due diligence with Rearden and worked with Rearden to use the MOVA Contour facial motion capture system for facial motion capture in TRON: Legacy (2010), Pirates of the Caribbean: On Stranger Tides (2011), John Carter (2012), and *The Avengers* (2012). Based upon its intellectual property due diligence, Disney MPG had actual knowledge that Rearden regarded the MOVA Contour facial motion capture system and methods to be embodiments of the claims of the '963 Patent.
- 246. And on information and belief, Disney MPG had actual knowledge of, or was willfully blind to, the '963 Patent because it had performed an intellectual property due diligence with DD3 prior to contracting with DD3 to use the MOVA Contour facial motion capture system for facial motion capture in Guardians of the Galaxy (2014), Avengers: Age of Ultron (2015), and Beauty and the Beast (2017). A competent intellectual property due diligence would have included an examination of the public record of assignments of the '963 Patent, which would have revealed that DD3 did not have a license from any entity that could have owned the MOVA Contour facial motion capture system.
- 247. Disney MPG's actual knowledge of the '963 Patent, actual knowledge that Rearden regarded the MOVA Contour facial motion capture system and methods to be embodiments of the **COMPLAINT**

1	
2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	

27

28

claims of the '963 Patent, and knowledge of or willful blindness to DD3's lack of authorization from
any entity that could have owned the MOVA Contour facial motion capture system, confirm Disney
MPG's specific intent to induce DD3 to infringe the '963 Patent by contracting with DD3 to use the
MOVA Contour facial motion capture system for facial motion capture in the Guardians of the
Galaxy, Avengers: Age of Ultron, and Beauty and the Beast motion pictures without authorization.

- 248. Consequently, Disney MPG actively induced each instance of DD3's use of the MOVA Contour facial motion capture system for facial motion capture in the *Guardians of the Galaxy*, *Avengers: Age of Ultron*, and *Beauty and the Beast* motion pictures without authorization in the performance of its contract with Disney MPG, or with entities subject to Disney MPG's supervision and control. Disney MPG's active inducement of direct infringement by DD3 constitutes acts of infringement of the '963 Patent under 35 U.S.C. § 271(b).
- 249. Defendant Disney MPG is liable to Plaintiffs for damages adequate to compensate for Disney MPG's direct and actively-induced infringements, in an amount to be proved at trial but in no event less than a reasonable royalty for the use made of Plaintiffs' invention by Disney MPG under 35 U.S.C. § 284.
- 250. In addition, defendant Disney MPG's direct and actively-induced infringements have caused Plaintiffs irreparable harm that is not compensable by monetary damages, and therefore Plaintiffs are entitled to injunctive relief under 35 U.S.C. § 283.
- 251. Disney MPG's direct and actively-induced infringements constitute willful, egregious misconduct, and consequently Plaintiffs are entitled to a discretionary increase of their damages award up to three times the amount found or assessed, costs, and attorney's fees under 35 U.S.C. § 284.
- 252. Finally, based on the foregoing facts, Plaintiffs request that this Court declare this an exceptional case, and award Plaintiffs their costs and attorney's fees under 35 U.S.C. § 285.

EIGHTH CAUSE OF ACTION: TRADEMARK INFRINGEMENT (DEFENDANTS DISNEY COMPANY, DISNEY MPG AND BUENA VISTA)

253. Plaintiffs reallege and incorporate each and every allegation contained in the paragraphs above with the same force and effect as if said allegations were fully set forth herein. COMPLAINT Case No.:

- 254. At all material times, plaintiff Rearden Mova was the owner of U.S. Registration No. 3,843,152 for the MOVA service mark.
 - 255. MOVA is an arbitrary or at least fanciful mark that is inherently distinctive.
- 256. Since at least 2006, Rearden Mova and its predecessors in interest have used the MOVA service mark in connection with the marketing, promotion, and sales of facial performance capture services and output files to the motion picture and video game industry, including major motion picture studios and VFX studios.
- 257. Through the marketing, promotion, and sales efforts of Rearden Mova and its predecessors in interest from 2005 through the present, and through the widespread publicity of and industry acclaim for the MOVA Contour facial performance capture technology and services offered by Rearden, Rearden Mova's MOVA service mark has acquired secondary meaning indicating that Rearden is the exclusive origin of the MOVA Contour facial performance capture technology and services.
- 258. At all material times, defendant Disney Company dominated and controlled defendants Disney MPG and Buena Vista.
- 259. Without authorization, Disney MPG and Buena Vista used Rearden Mova's MOVA service mark in commerce in the credits on their *Guardians of the Galaxy* film, stating that "Facial motion capture services were provided by Mova, a division of Digital Domain," as shown below:

260. Without authorization, Disney MPG and Buena Vista used Rearden's MOVA service mark in commerce in their *Beauty of the Beast* featurette in connection with commercial advertising and promotion of their *Beauty and the Beast* film

- 261. Without authorization, Disney MPG, acting either directly or through entities subject to its supervision and control, used Rearden's MOVA service mark in commerce in connection with commercial advertising and promotion of its *Guardians of the Galaxy* and *Beauty and the Beast* films, including press releases, press conferences, and other advertising and promotional activities.
- 262. Disney MPG and Buena Vista's unauthorized use of Rearden Mova's MOVA service mark on the credits for their *Guardians of the Galaxy* and *Beauty and the Beast* films is a use of a word or term that is likely to cause confusion, mistake or deception as to the affiliation, connection, or association of Disney with Rearden, and/or as to the origin, sponsorship of approval of the facial motion capture services used in the *Guardians of the Galaxy* and *Beauty and the Beast* films by Rearden because the MOVA service mark is exclusively associated with Rearden and its MOVA Contour facial motion capture services.
- 263. Disney MPG and Buena Vista's unauthorized use of Rearden Mova's MOVA service mark on the credits for their *Guardians of the Galaxy* and *Beauty and the Beast* films is a misleading description or representation of fact that is likely to cause confusion, mistake or deception as to the affiliation, connection, or association of Disney with Rearden, and/or as to the origin, sponsorship of approval of the facial motion capture services used in the *Guardians of the Galaxy* and *Beauty and the Beast* films by Rearden because the MOVA service mark is exclusively associated with Rearden and its MOVA Contour facial motion capture services.
- 264. Unauthorized use of Rearden Mova's MOVA service mark by Disney MPG, acting either directly or through entities subject to its supervision and control, including but not limited to defendants Marvel and Mandeville, in commerce in connection with commercial advertising and promotion of its *Guardians of the Galaxy* and *Beauty and the Beast* films, including press releases, press conferences, and other advertising and promotional activities, constitutes a use of a word or term and a misleading description or representation of fact that is likely to cause confusion, mistake COMPLAINT

	ı
1	
2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	
26	
27	
20	۱

or deception as to the characteristics and qualities of the facial motion capture services in the films because the MOVA service mark is exclusively associated with Rearden and its MOVA Contour facial motion capture services.

- 265. Rearden Mova is, and is likely to continue to be, damaged by Disney MPG and Buena Vista's unauthorized use of its Rearden MOVA service mark.
- 266. Disney MPG and Buena Vista's unauthorized use of Rearden Mova's MOVA service mark in commerce was with actual knowledge or willful disregard of Rearden Mova's service mark, with intent to cause confusion, mistake or deception.
- 267. Defendants Disney Company, Disney MPG, and Buena Vista are liable to Plaintiffs for each and every act of trademark infringement alleged herein.
- 268. Plaintiffs are entitled to an award of its actual damages, disgorgement of defendants' profits, and costs and attorney's fees.
- 269. Furthermore, Plaintiffs have suffered irreparable harm that is not compensable by monetary damages, and is therefore entitled to injunctive and other equitable relief.

PRAYER FOR RELIEF

Wherefore, Plaintiffs request the following relied:

- A. Enter preliminary and/or permanent injunctions as follows:
- 1. Pursuant to 17 U.S.C. § 502, enter an injunction prohibiting defendants from reproducing, distributing, performing or displaying, or authorizing the same, the *Guardians* of the Galaxy, Avengers: Age of Ultron, and Beauty and the Beast motion pictures in any medium without authorization of Plaintiffs.
- 2. Pursuant to 35 U.S.C. § 283, enter an injunction prohibiting defendant Disney MPG from using the patented MOVA Contour facial motion capture system and methods without authorization of Plaintiffs.
- 3. Pursuant to 15 U.S.C. § 1116, enter an injunction prohibiting defendants from using any of Plaintiffs' trademarks and service marks, and prohibiting distribution of the *Guardians of the Galaxy* and *Beauty and the Beast* motion pictures in any medium bearing any of Plaintiffs' trademarks and service marks without authorization of Plaintiffs.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
2122
23
24
25
26
27
28

B.	Pursuant to 17 U.S.C. § 503 and/or 15 U.S.C. § 1118, order the impoundment and
destruction of	all infringing copies of Guardians of the Galaxy, Avengers: Age of Ultron, and Beauty
and the Beast	motion pictures in any medium.

- C. Award financial damages compensation as follows:
- 1. Pursuant to 17 U.S.C. § 504, award Plaintiffs (a) actual damages; and (b) any additional profits of defendants that are attributable to the copyright infringements alleged herein and are not taken into account in computing the actual damages.
- 2. Pursuant to 35 U.S.C. § 284, award Plaintiffs damages adequate to compensate for defendant Disney MPG's patent infringements, in an amount to be proved at trial but in no event less than a reasonable royalty for the use made of Plaintiffs' invention by defendant Disney MPG.
- 3. Pursuant to 17 U.S.C. § 1117, award Plaintiffs (a) defendants' profits; (b) damages sustained by Plaintiffs in an amount to be proved at trial; and (c) the costs of this action.
 - D. Willful Infringement.
 - 1. Pursuant to 35 U.S.C. § 284, enter a finding that defendant Disney MPG's patent infringements as alleged herein were willful, egregious misconduct, and order a discretionary increase of Plaintiffs' damages award up to three times the amount found or assessed, costs, and attorney's fees.
 - 2. Pursuant to 17 U.S.C. § 1117, enter a finding that defendants' trademark infringements as alleged herein were willful, in reckless disregard, or in willful blindness to Plaintiffs' copyright and trademark rights, and order enhanced damages, costs, and attorney's fees.
 - E. Award Plaintiffs their costs and attorney's fees as follows:
 - 1. Pursuant to 17 U.S.C. § 505, award full costs and a reasonable attorney's fee to Plaintiffs.

1	2. Pursuant to 35 U.S.C. § 285, enter a finding that Disney MPG's patent		
2	infringements as alleged herein, present an exceptional case, and award Plaintiffs their costs		
3	and attorney's fees with respect to their patent infringement claims.		
4	3. Pursuant to 15 U.S.C. § 1117, enter a finding that Defendants' trademark		
5	infringements as alleged herein present an exceptional case, and award Plaintiffs their costs		
6	and attorney's fees with respect to their patent infringement claims.		
7	F. Grant such other and further relief as the Court deems just and equitable.		
8	DEMAND FOR JURY TRIAL		
9	Pursuant to Fed. R. Civ. P. 38(b), plaintiff demands trial by jury of all issues so triable under		
10	the law.		
11	DATED: July 17, 2017 HAGENS BERMAN SOBOL SHAPIRO LLP		
12	By /s/ Rio S. Pierce		
13	Rio S. Pierce, CBA No. 298297		
14	Rio S. Pierce, CBA No. 298297 HAGENS BERMAN SOBOL SHAPIRO LLP		
15	715 Hearst Avenue, Suite 202 Berkeley, CA 94710 Telephone: (510) 725-3000		
16	Facsimile: (510) 725-3000 Facsimile: (510) 7253001 riop@hbsslaw.com		
17	Steve W. Berman (pro hac vice pending)		
18	Mark S. Carlson (<i>pro hac vice</i> pending) HAGENS BERMAN SOBOL SHAPIRO LLP		
19	1918 Eighth Avenue, Suite 3300 Seattle, WA 98101		
20	Telephone: (206) 623-7292 Facsimile: (206) 623-0594		
21	steve@hbsslaw.com markc@hbsslaw.com		
22	Attorneys for Plaintiffs		
23	Rearden LLC and Rearden Mova LLC		
24			
25			
26			
27			
28			

COMPLAINT Case No.:

Exhibit 1

Certificate of Registration Document 1 Filed 07/17/17 Page 88 of 307

This Certificate issued under the seal of the Copyright Office in accordance with title 17, *United States Code*, attests that registration has been made for the work identified below. The information on this certificate has been made a part of the Copyright Office records.

Registration Number

TXu 1-977-151

Effective Date of Registration:
February 11, 2016

United States Register of Copyrights and Director

Applicant's Tracking Number: 2347.3.4

Title		
	Title of Work:	MOVA Contour
Complet	ion/Publication	
Author _	Year of Completion:	2009
	• Author: Author Created: Work made for hire: Citizen of:	OnLive, Inc. computer program Yes United States
Copyrigh	t Claimant	
	Copyright Claimant: Transfer statement:	Rearden Mova LLC 355 Bryant Street, Suite 110, San Francisco, CA, 94107, United States By written agreement
Rights a	nd Permissions _	
	Telephone: Address:	Law Offices of Jonathan Kirsch Jonathan Kirsch jk@jonathankirsch.com (310)785-1200 1880 Century Park East Suite 515 Los Angeles, CA 90067 United States
Certification	on	
	_	Jonathan Kirsch

Correspondence: Yes

Exhibit 2

LIS007605861B2

(12) United States Patent

LaSalle et al.

(54) APPARATUS AND METHOD FOR PERFORMING MOTION CAPTURE USING SHUTTER SYNCHRONIZATION

(75) Inventors: **Greg LaSalle**, San Francisco, CA (US); **Roger Van der Laan**, Los Altos, CA (US); **Stephen G. Periman**, Palo Alto,

CA (US); **John Speck**, Sunnyvale, CA (US); **Timothy S. Cotter**, Sunnyvale, CA (US); **Kenneth A. Pearce**, San

Francisco, CA (US)

(73) Assignee: OnLive, Inc., Palo Alto, CA (US)

(*) Notice: Subject to any disclaimer, the term of this

patent is extended or adjusted under 35 U.S.C. 154(b) by 576 days.

This patent is subject to a terminal dis-

claimer.

(21) Appl. No.: 11/077,628

(22) Filed: Mar. 10, 2005

(65) Prior Publication Data

US 2006/0203096 A1 Sep. 14, 2006

(51) Int. Cl. H04N 5/222 (2006.01) H04N 9/04 (2006.01) H04N 5/228 (2006.01) H04N 5/225 (2006.01) H04N 5/262 (2006.01)

(52) **U.S. Cl.** **348/371**; 348/208.14; 348/370; 348/207.99; 348/218.1; 348/239

(56) References Cited

U.S. PATENT DOCUMENTS

3,699,856 A 10/1972 Chabot et al.

(10) Patent No.: US 7,605,861 B2 (45) Date of Patent: *Oct. 20, 2009

4,389,670 A * 6/19	983 Davidson et al 348/162
4,417,791 A 11/19	983 Erland et al.
5,235,416 A * 8/19	993 Stanhope 348/77
5,304,809 A * 4/19	994 Wickersheim 250/458.1
5,480,341 A 1/19	996 Plakos
5,519,826 A 5/19	996 Harper et al.
5.569.317 A * 10/19	996 Sarada et al 524/111

(Continued)

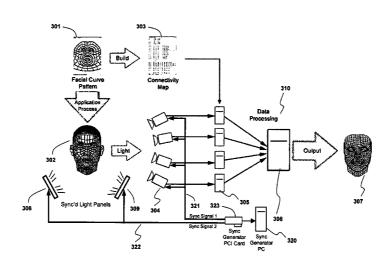
FOREIGN PATENT DOCUMENTS

WO	WO 99/55220	11/1999
WO	WO-9955220	11/1999

OTHER PUBLICATIONS

Guenter et al., "Making Faces", International Conference on Computer Graphics and Interactive Techniques, Proceedings of the 25th annual conference on Computer graphics and interactive techniques, pp. 55-66, 1998.*

Radovan et al., "Facial animation in a nutshell: past, present and future", Proceedings of the 2006 annual research conference of the South African institute of computer scientists and information technologists on IT research in developing couuntries, p. 71-79, Oct. 9-11, 2006, Somerset West, South Africa.*


(Continued)

Primary Examiner—David L Ometz Assistant Examiner—Richard M Bemben (74) Attorney, Agent, or Firm—Blakely, Sokoloff, Taylor & Zafman LLP

(57) ABSTRACT

A method is described comprising: applying phosphorescent paint to specified regions of a performer's face and/or body; strobing a light source on and off, the light source charging the phosphorescent paint when on; and strobing the shutters of a first plurality of cameras synchronously with the strobing of the light source to capture images of the phosphorescent paint, wherein the shutters are open when the light source is off and the shutters are closed when the light source is open.

52 Claims, 11 Drawing Sheets

Page 2

U.S. PATENT DOCUMENTS

5 953 673		12/1000	T
5,852,672		12/1998	Lu
5,966,129		10/1999	Matsukuma et al.
6,020,892	A *	2/2000	Dillon 345/419
6,151,118	Α	11/2000	Norita et al.
6,243,198	B1	6/2001	Sedlmayr
6,473,717	B1	10/2002	Claussen et al.
6,513,921	B1 *	2/2003	Houle
6,554,706	B2	4/2003	Kim et al.
6,592,465	B2 *	7/2003	Lutz et al 473/198
6,633,294	B1 *	10/2003	Rosenthal et al 345/474
6,850,872	B1	2/2005	Marschner et al.
6,943,949	B2	9/2005	Sedlmayr
7,068,277	B2 *	6/2006	Menache 345/473
7,081,997	B2	7/2006	Sedlmayr
7,154,671	B2	12/2006	Sedlmayr
7,184,047	B1 *	2/2007	Crampton 345/473
7,218,320	B2 *	5/2007	Gordon et al 345/475
7,333,113	B2 *	2/2008	Gordon 345/475
7,358,972	B2 *	4/2008	Gordon et al 345/473
7,369,681	B2 *	5/2008	Foth et al 382/103
2003/0095186	A1*	5/2003	Aman et al 348/162
2006/0061680	A1*	3/2006	Madhavan et al 348/370
2006/0192785	A1*	8/2006	Marschner et al 345/473
2007/0024946	$\mathbf{A}1$	2/2007	Panasyuk et al.
2008/0100622	A1*	5/2008	Gordon 345/427

OTHER PUBLICATIONS

Chuang and Bregler, Performance driven facial animation using blendshape interpolation, Computer Science Department, Stanford University.*

Wang et al., "Assembling an expressive facial animation system", ACM Siggraph Video Game Symposium, Proceedings of the 2007 ACM Siggraph symposium on Video games, pp. 21-26, 2007.*

Graham, M., "The Power of Texture: A New Approach for Surface Capture of the Human Hand," Apr. 30, 2004, Carnegie Mellon University Computer Science Department, pp. 1-23.

Guskov, I., et al., "Trackable Surfaces," Jul. 2003, Siggraph 2003, pp. 251-257, 379.

Parke, F., "Computer Generated Animation of Faces," 1972, Siggraph 1972, pp. 451-457.

Scott, R., Sparking Life Notes on the Performance Capture Sessions for The Lord of the Rings: The Two Towers, Nov. 2003, ACM Siggraph vol. 37, No. 4, pp. 17-21.

Vicon, Vicon Motion Picture Ltd., 2 pgs, printed Feb. 25, 2005, www.vicon.com/jsp/index.jsp.

Vicon-Products, Vicon MX: System Overview, 2 pgs., printed Feb. 25, 2005, www.vicon.com/jsp/products/product-overview.jsp.

Vicon-Products, MX System: Cameras, "The Most Powerful, Practical and Versatile Range of Motion Capture Cameras," 1 pg., printed Feb. 25, 2005, www.vicon.com/jsp/products/product-category.jsp?cat=cameras.

Vicon, Vicon Motion Systems // MX3, MX3 Camera, The MX3 0.3 Million-pixel Motion Capture Camera, 2 pgs., printed on Feb. 25, 2005, www. vicon.com/jsp/products/product-detail.jsp?id=173.

Vicon, Vicon Motion Systems // MX13, MX13 Camera, The MX13 1.3 Million-pixel Motion Capture Camera, 2 pgs., printed on Feb. 25, 2005, www.vicon.com/jsp/products/prdouct-detail.jsp?id=170.

Vicon, Vicon Motion Systems // MX40, MX40 Camera, The MX40 4 Million-pixel Motion Capture Camera, 2 pgs., printed on Feb. 25, 2005, www.vicon.com/jsp/products/product-detail.jsp?id=167.

Vicon, Vicon motion Systems // SV Cam, 1 pg., printed on Feb. 25, 2005, www.vicon.com/jsp/products/product-detail.jsp?id+189.

Motion Analysis Corporation, The Motion Capture Leader, 1 pg., printed on Feb. 25, 2005, www.motionanalysis.com/.

MotionAnalysis, Video Game Products, Products, 1 pg., printed Feb. 25, 2005, www.motionanaylsis.com/applications/animation/games/products.html.

MotionAnalysis, Eagle Digital System, 4 pgs., printed on Feb. 25, 2005, www.motionanalysis.com/applications/animation/games/eaglesystem.html.

MotionAnalysis, Hawk Digital System, 4 pgs., printed on Feb. 25, 2005, www.motionanalysis.com/applications/animation/games/hawksystem.html.

Motion Analysis, Falcon Analog System, 4 pgs., printed on Feb. 25, 2005, www.motionanaylsis.com/applications/animation/games/falconsystem.html.

Office Action from U.S. Appl. No. 11/077,628, mailed Feb. 13, 2009, 24 pgs.

Office Action from U.S. Appl. No. 11/255,854, mailed Feb. 23, 2009, 14 pgs.

Bourke, P., "Cross Correlation", "Cross Correlation", Auto Correlation—2D Pattern Identification, Aug. 1996, printed on Oct. 29, 2005, http://astonomy.swin.edu.au/~pbourke/other/correlat/.

Chuang, & Bregler, et al., "Performance Driven Facial Animation using Blendshape Interpolation", Computer Science Department, Stanford University, (Apr. 2002), 8 pages.

Graham, M Ian, "The Power of Texture: A New Approach for Surface Capture of the Human Hand", Carnegie Mellon University Computer Science Department, (Apr. 30, 2004), pp. 1-23.

Guenter, Brian, et al., "Making Faces", "Making Faces", International Conference on Computer Graphics and Interactive Techniques, Proceedings of the 25th annual conference on computer graphics and interactive techniques, pp. 55-66, 1998.

Guskov, "Direct Pattern Tracking On Flexible Geometry", 6 pages, Winter School of Computer Graphics, 2002, University of Michigan, (2002).

Guskov, Igor, et al., "Trackable Surfaces", Eurographics/Siggraph Symposium on Computer Animation, (Jul. 2003), pp. 251-257 and 379.

Motionanalysis, "Hawk Digital System", www.motionanalysis.com/applications/animation/games/hawksytem.html, 4 pgs., printed on Feb. 25, 2005, 4 pages.

Motionanalysis, "The Motion Capture Leader, The Undisputed Leader for 3D Optical Motion Capture System", www. motionanaylsis.com/, (Jan. 27, 2005), 1 page.

Motionanalysis, "Eagle Digital System", www.motionanalysis.com/applications/animation/games/eaglesystem.html, 4 pgs. printed on Feb. 25, 2005, 4 pages.

Motionanalysis, "Falcon Analog System", www.motionanalysis.com/applications/animation/games/falconsystem.html, 4 pgs., printed on Feb. 25, 2005, 4 pages.

Motionanalysis, "Video Game Products, Products", www. motionanaylsis.com/applications/animation/games/products.html, printed Feb. 25, 2005, 1 page.

Parke, Frederick I., "Computer Generated Animating of Faces", Siggraph 1972, pp. 451-457.

Radovan, Mauricio, et al., "Facial Animation in a Nutshell: Past, Present and Future", Proceedings of the 2006 annual research conference of the South African institute of computer scientists and information technologists on IT research in developing countries, pp. 71-79, (2006).

Scott, Remington, "Sparking Life Notes on the Performance Capture Sessions for The Lord of the Rings: The Two Towers", ACM Siggraph, vol. 37, No. 4, (Nov. 2003), 17-21 pages.

Vicon, "Vicon Motion Systems // MX13, MX13 Camera, The MX13 1.3 Million-pixel Motion Capture Camera", www.vicon.com/jsp/products/prdouct-detail.jsp?id=170, (Feb. 25, 2005), 2 pages.

Vicon, "Vicon Motion Systems // MX3, MX3 Camera, The MX3 0.3 Million-pixel Motion Capture Camera", www.vicon.com/jsp/products/product-detail.jsp?id=173, (Feb. 25, 2005), 2 pages.

Vicon, "Vicon Motion Systems // MX40, MX40 Camera, The MX40 4 Million-pixel Motion Capture Camera", www.vicon.com/jsp/products/product-detail.jsp?id=167, 2 pgs. printed on Feb. 25, 2005, 2 page.

Vicon, "Vicon motion Systems // SV Cam", www.vicon.com/jsp/products/product-detail.jsp?id+189, (Feb. 25, 2005), 1 page.

Vicon, "Vicon Systems Ltd.", www.vicon.com/jsp/index.jsp, cited as Vicon Motion Picture Ltd. but that was named incorrectly. Correct title is Vicon Systems Ltd. (Feb. 25, 2005), 2 pages.

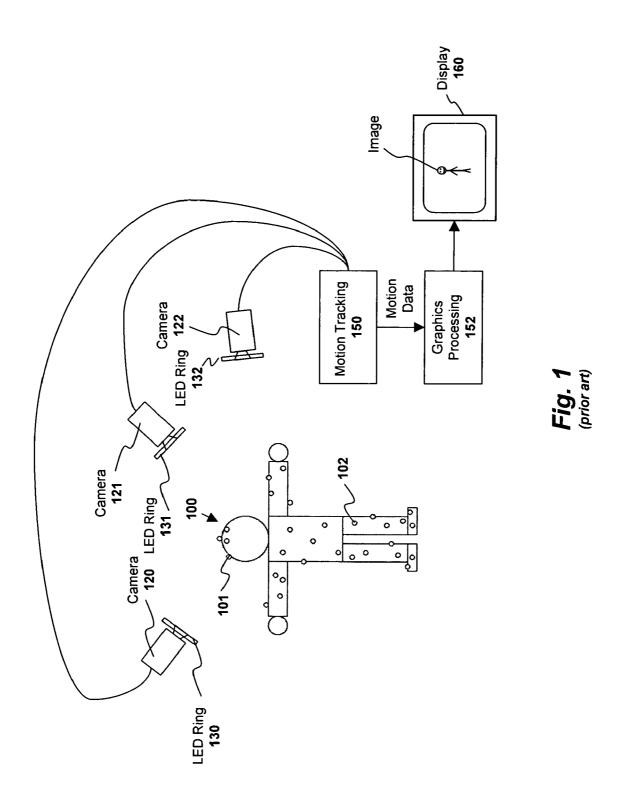
Vicon-Products, "MX System: Cameras, The Most Powerful, Practical and Versatile Range of Motion Capture Cameras", www.vicon.com/jsp/products/product-category.jsp?cat=cameras, (Feb. 25, 2006), 1 page.

US 7,605,861 B2

Page 3

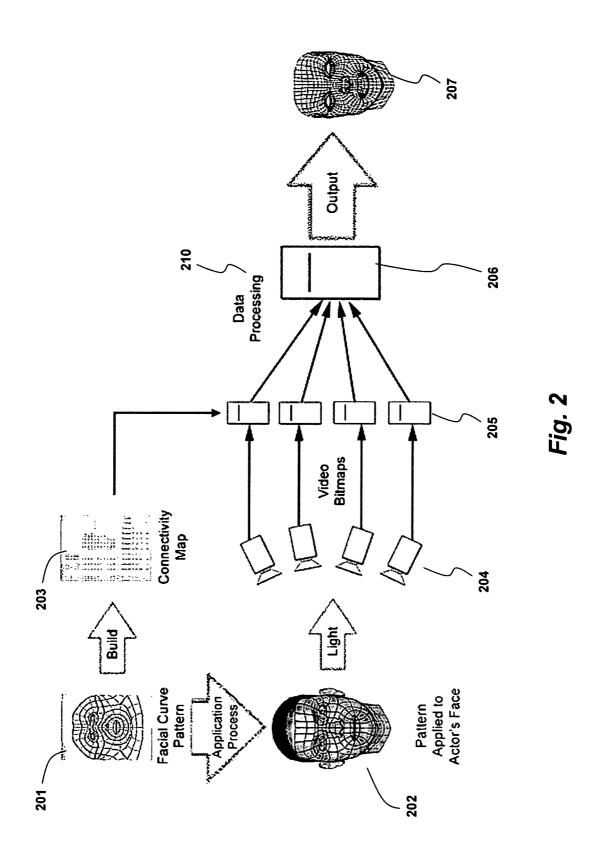
Vicon-Products, "Vicon MX: System Overview", www.vicon.com/jsp/products/product-overview.jsp, (Feb. 25, 2005), 2.

Wang, Alice, et al., "Assembling an Expressive Facial Animation System", ACM Siggraph Video Game Symposium, Proceedings of the 2007 ACM Siggraph symposium on Video games, pp. 21-26, 2007.

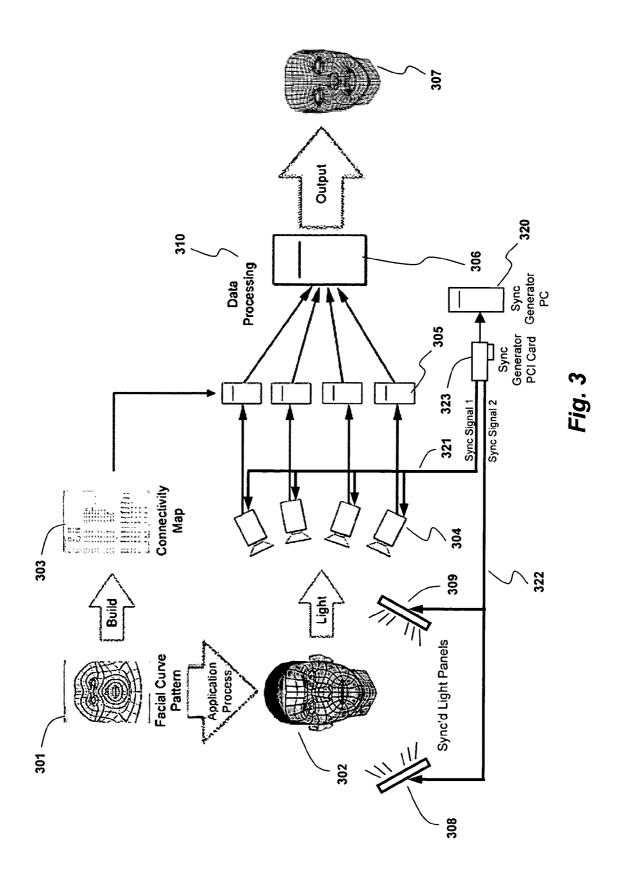

Zhang, "Spacetime Faces: High Resolution Capture for Modeling and Animation", 11 pages, ACM Transactions on Graphics, 2004, University of Washington.

Examination Report from counterpart New Zealand Patent Application No. 553106, mailed Jun. 22, 2009, 2 pgs.

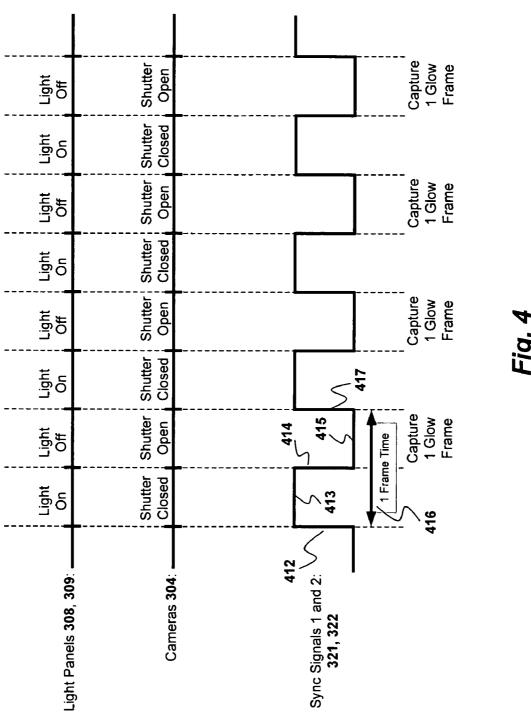
* cited by examiner


Oct. 20, 2009

Sheet 1 of 11


Oct. 20, 2009

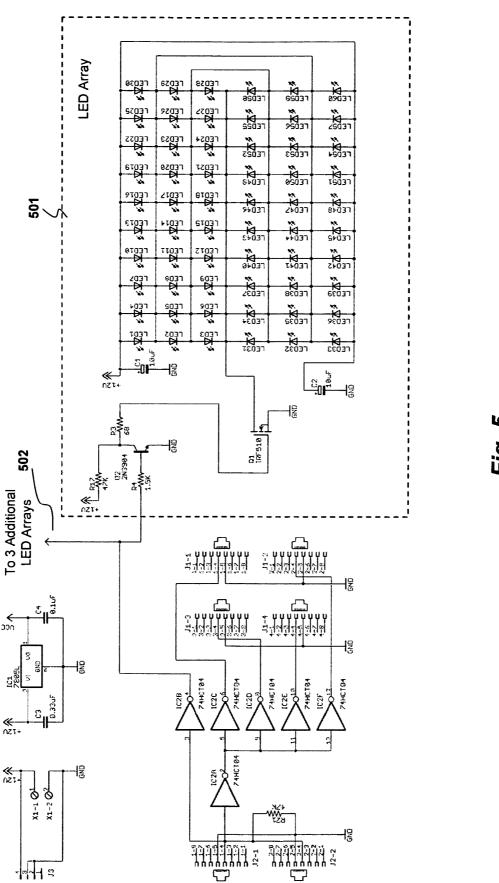
Sheet 2 of 11


Oct. 20, 2009

Sheet 3 of 11

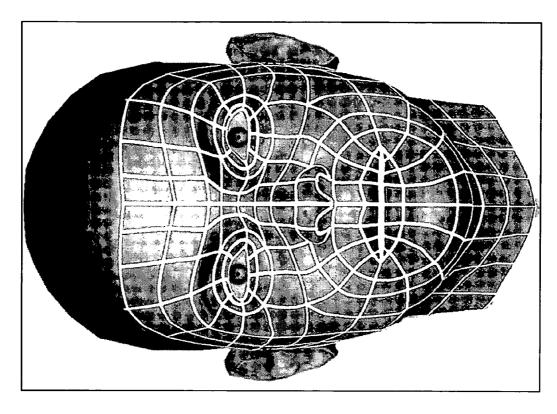
Oct. 20, 2009

Sheet 4 of 11

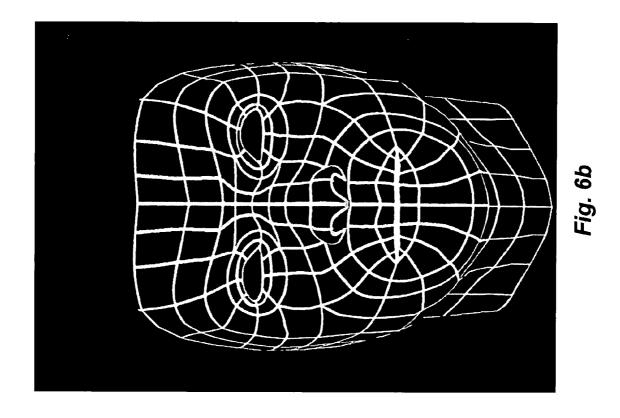


U.S. Patent

Oct. 20, 2009


Sheet 5 of 11

US 7,605,861 B2


=ig. 5

U.S. Patent Oct. 20, 2009 Sheet 6 of 11

Oct. 20, 2009

Sheet 7 of 11

Oct. 20, 2009

Sheet 8 of 11

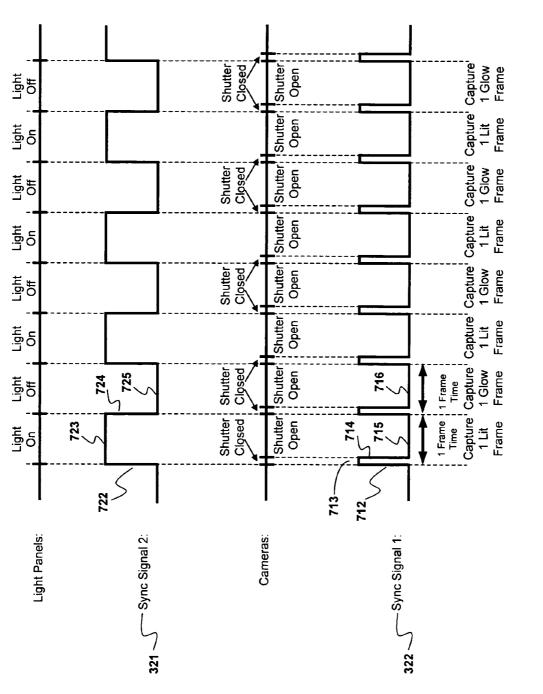


Fig. 7

Oct. 20, 2009

Sheet 9 of 11

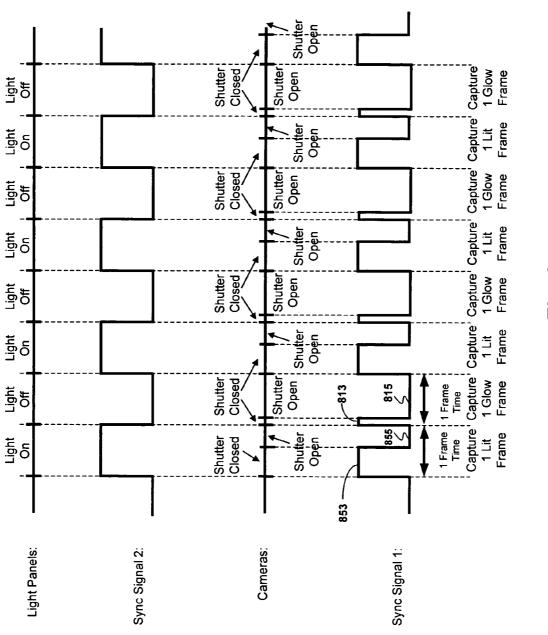
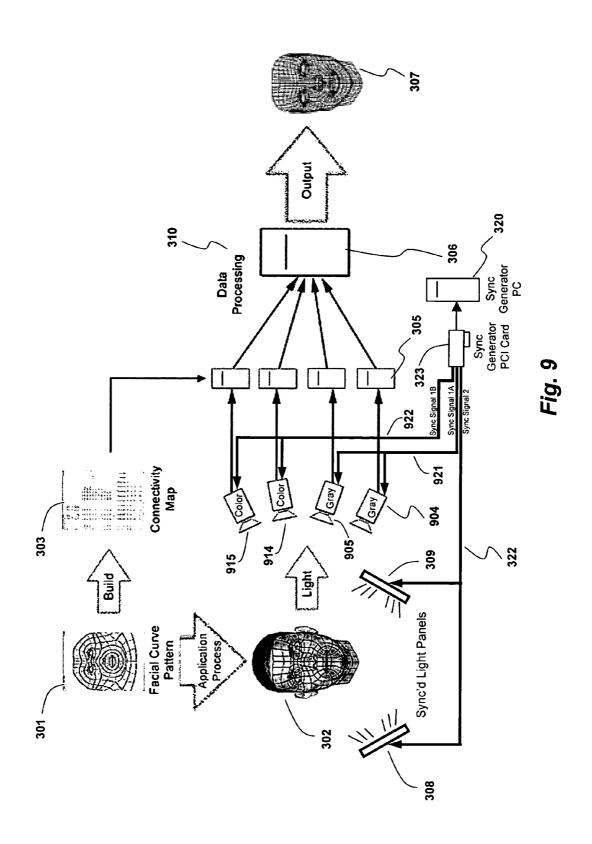
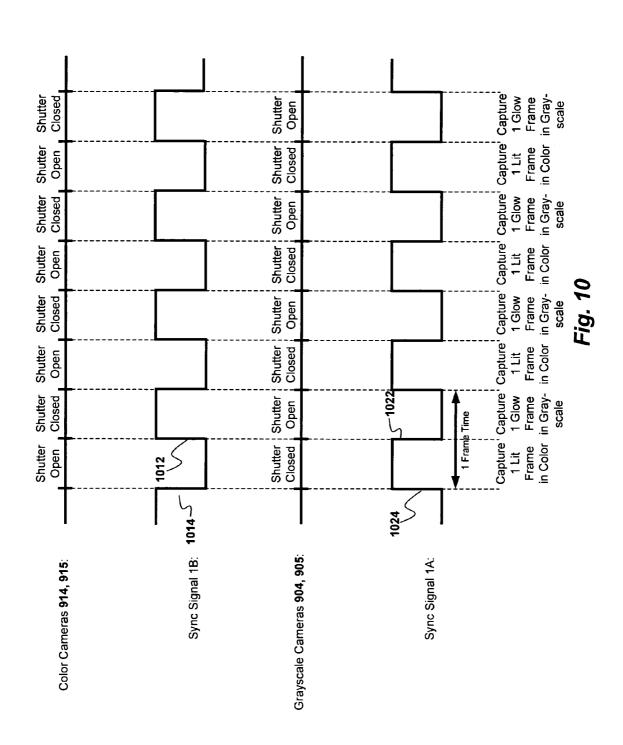



Fig. 8


Oct. 20, 2009

Sheet 10 of 11

Oct. 20, 2009

Sheet 11 of 11

1

APPARATUS AND METHOD FOR PERFORMING MOTION CAPTURE USING SHUTTER SYNCHRONIZATION

BACKGROUND OF THE INVENTION

1. Field of the Invention

This invention relates generally to the field of motion capture. More particularly, the invention relates to an improved 10 apparatus and method for performing motion capture using shutter synchronization and/or using phosphorescent paint.

2. Description of the Related Art

"Motion capture" refers generally to the tracking and 15 is open. recording of human and animal motion. Motion capture systems are used for a variety of applications including, for example, video games and computer-generated movies. In a typical motion capture session, the motion of a "performer" is captured and translated to a computer-generated character.

As illustrated in FIG. 1 in a motion capture system, a plurality of motion tracking "markers" (e.g., markers 101, 102) are attached at various points on a performer's 100's body. The points are selected based on the known limitations 25 of the human skeleton. Different types of motion capture markers are used for different motion capture systems. For example, in a "magnetic" motion capture system, the motion markers attached to the performer are active coils which generate measurable disruptions x, y, z and yaw, pitch, roll in a magnetic field.

By contrast, in an optical motion capture system, such as that illustrated in FIG. 1, the markers 101, 102 are passive spheres comprised of retro-reflective material, i.e., a material 35 painted on a performer's face during a lit frame. which reflects light back in the direction from which it came, ideally over a wide range of angles of incidence. A plurality of cameras 120, 121, 122, each with a ring of LEDs 130, 131, 132 around its lens, are positioned to capture the LED light reflected back from the retro-reflective markers 101, 102 and other markers on the performer. Ideally, the retro-reflected LED light is much brighter than any other light source in the room. Typically, a thresholding function is applied by the cameras 120, 121, 122 to reject all light below a specified level of brightness which, ideally, isolates the light reflected off of the reflective markers from any other light in the room and the cameras 120, 121, 122 only capture the light from the markers 101, 102 and other markers on the performer.

A motion tracking unit 150 coupled to the cameras is 50 programmed with the relative position of each of the markers 101, 102 and/or the known limitations of the performer's body. Using this information and the visual data provided from the cameras 120-122, the motion tracking unit 150 generates artificial motion data representing the movement of $\,^{55}$ the performer during the motion capture session.

A graphics processing unit 152 renders an animated representation of the performer on a computer display 160 (or similar display device) using the motion data. For example, the graphics processing unit 152 may apply the captured motion of the performer to different animated characters and/ or to include the animated characters in different computergenerated scenes. In one implementation, the motion tracking unit 150 and the graphics processing unit 152 are programmable cards coupled to the bus of a computer (e.g., such as the PCI and AGP buses found in many personal computers). One

2

well known company which produces motion capture systems is Motion Analysis Corporation (see, e.g., www.motionanalysis.com).

SUMMARY

A method is described comprising: applying phosphorescent paint to specified regions of a performer's face and/or body; strobing a light source on and off, the light source charging the phosphorescent paint when on; and strobing the shutters of a first plurality of cameras synchronously with the strobing of the light source to capture images of the phosphorescent paint, wherein the shutters are open when the light source is off and the shutters are closed when the light source

BRIEF DESCRIPTION OF THE DRAWINGS

A better understanding of the present invention can be 20 obtained from the following detailed description in conjunction with the drawings, in which:

FIG. 1 illustrates a prior art motion tracking system for tracking the motion of a performer using retro-reflective markers and cameras.

FIG. 2 illustrates one embodiment of the invention which employs a curve pattern to track facial expression.

FIG. 3 illustrates one embodiment of the invention which synchronizes light panels and camera shutters.

FIG. 4 is a timing diagram illustrating the synchronization between the light panels and the shutters according to one embodiment of the invention.

FIG. 5 is a schematic representation of an exemplary LED array and the connectors for the synchronization signals.

FIG. 6a illustrates a set of exemplary illuminated curves

FIG. 6b illustrates a set of exemplary illuminated curves painted on a performer's face during a "glow" frame.

FIG. 7 is a timing diagram illustrating the synchronization between the light panels and the camera shutters in an embodiment for capturing both lit frames and glow frames.

FIG. 8 is a timing diagram illustrating the synchronization between the light panels and the camera shutters in another embodiment for capturing both lit frames and glow frames.

FIG. 9 illustrates one embodiment of a system for captur-45 ing both lit frames and glow frames.

FIG. 10 illustrates a timing diagram associated with the system shown in FIG. 9.

DETAILED DESCRIPTION OF PREFERRED **EMBODIMENTS**

Described below is an improved apparatus and method for performing motion capture using shutter synchronization and/or phosphorescent paint. In the following description, for the purposes of explanation, numerous specific details are set forth in order to provide a thorough understanding of the present invention. It will be apparent, however, to one skilled in the art that the present invention may be practiced without some of these specific details. In other instances, well-known structures and devices are shown in block diagram form to avoid obscuring the underlying principles of the invention.

The assignee of the present application previously developed a system for performing color-coded motion capture and a system for performing motion capture using a series of reflective curves painted on a performer's face. These systems are described in the co-pending applications entitled "Apparatus and Method for Capturing the Motion and/or

3

EXPRESSION OF A PERFORMER," Ser. No. 10/942,609, and Ser. No. 10/942,413, Filed Sep. 15, 2004. These applications are assigned to the assignee of the present application and are incorporated herein by reference.

As described in these co-pending applications, by analyzing curves rather than discrete data points on a performer's face, the motion capture system is able to generate significantly more surface data than traditional marker-based tracking systems. FIG. 2 illustrates an exemplary motion capture system described in the co-pending applications in which a predefined facial curve pattern 201 is adjusted to fit the topology of each performer's face 202. In one embodiment, the three-dimensional (3-D) curve pattern is adjusted based on a 3-D map of the topology of the performer's face captured using a 3-D scanning system.

The curves defined by the curve pattern 201 are painted on the face of the performer using retro-reflective, non-toxic paint or theatrical makeup. As described in detail below, in one embodiment of the invention, non-toxic phosphorescent paint is used to create the curves.

As described in the co-pending applications, each curve painted on the performer's face has a unique identifying name and/or number (to support systematic data processing) and potentially a color that can be easily identified by the optical capture system. Once the curve pattern is applied, in one 25 embodiment, the curve pattern is tracked by a motion capture processing system 210 comprised of one or more camera controllers 205 and a central motion capture controller 206 during the course of a performance. In one embodiment, each of the camera controllers 205 and central motion capture 30 controller 206 is implemented using a separate computer system. Alternatively, the cameral controllers and motion capture controller may be implemented as software executed on a single computer system or as any combination of hardware and software.

In one embodiment, each of the camera controllers 205 and/or the motion capture controller 206 is programmed with data 203 representing the curve pattern 201. The motion capture system 210 uses this information to trace the movement of each curve within the curve pattern during a performance. For example, the performer's facial expressions provided by each of the cameras 204 (e.g., as bitmap images) are analyzed and the curves identified using the defined curve pattern.

In one embodiment, the curve data 203 is provided to the 45 motion capture system in the form of a "connectivity map," which is a text file representation of the curve pattern 201 which includes a list of all curves in the pattern and a list of all surface patches in the pattern, with each patch defined by its bounding curves. It is used by the camera controllers 205 50 and/or the central motion capture controller 206 to identify curves and intersections in the optically captured data. This, in turn, allows point data from the curves to be organized into surface patches and ultimately the triangulated mesh of a final 3-D geometry 207.

In one embodiment of the invention, the efficiency of the motion capture system is improved by using phosphorescent paint and/or by precisely controlling synchronization between the cameras' shutters and the illumination of the painted curves. More specifically, referring to FIG. 3, in one embodiment of the invention, the predefined facial curve pattern 301 is painted on the performer's face 202 using phosphorescent paint. In addition, light panels 308-309 (e.g., LED arrays) are precisely synchronized with the opening and closing of the shutters of the motion capture cameras 304. In one embodiment, the synchronization between the light panels 308-309 and cameras 304 is controlled via synchroniza-

4

tion signals 322 and 321, respectively. As indicated in FIG. 3, in one embodiment, the synchronization signals are provided from a peripheral component interface ("PCI") card 323 coupled to the PCI bus of a personal computer 320. An exemplary PCI card is a PCI-6601 manufactured by National Instruments of Austin, Tex. However, the underlying principles of the invention are not limited to any particular mechanism for generating the synchronization signals.

The synchronization between the light sources and the cameras employed in one embodiment of the invention is illustrated in FIG. 4. In this embodiment, the two synchronization signals 321, 322 are the same. In one embodiment, the synchronization signals cycle between 0 to 5 Volts. In response to the synchronization signals 321, 322, the shutters of the cameras are periodically opened and closed and the light panels are periodically turned off and on, respectively. For example, on the rising edge 412 of the synchronization signals, the camera shutters are closed and the light panels are illuminated. The shutters remain closed and the light panels 20 remain illuminated for a period of time 413. Then, on the falling edge of the synchronization signals 414, the shutters are opened and the light panels are turned off. The shutters and light panels are left in this state for another period of time 415. The process then repeats on the rising edge 417 of the synchronization signals.

As a result, during the first period of time 413, no image is captured by the cameras, and the phosphorescent paint is illuminated with light from the light panels 308-309. During the second period of time 415, the light is turned off and the cameras capture an image of the glowing phosphorescent paint on the performer. Because the light panels are off during the second period of time 415, the contrast between the phosphorescent paint and the rest of the room is extremely high (i.e., the rest of the room is pitch black), thereby improving 35 the ability of the system to differentiate the various curves painted on the performer's face. In addition, because the light panels are on half of the time, the performer will be able to see around the room during the performance. The frequency 416 of the synchronization signals may be set at such a high rate that the performer will not even notice that the light panels are being turned on and off. For example, at a flashing rate of 75 Hz or above, most humans are unable to perceive that a light is flashing and the light appears to be continuously illuminate. In psychophysical parlance, when a high frequency flashing light is perceived by humans to be continuously illuminated, it is said that "fusion" has been achieved. In one embodiment, the light panels are cycled at 120 Hz; in another embodiment, the light panels are cycled at 140 Hz, both frequencies far above the fusion threshold of any human. However, the underlying principles of the invention are not limited to any particular frequency.

FIG. 6a is an exemplary picture of the performer during the first time period 413 (i.e., when the light panels are illuminated) and FIG. 6b shows the illuminated reflective curves 55 captured by the cameras 304 during the second time period 415 (i.e., when the light panels are turned off). During the first time period, the phosphorescent paint is charged by the light from the light panels and, as illustrated in FIG. 6b, when the light panels are turned off, the only light captured by the cameras is the light emanating from the charged phosphorescent paint. Thus, the phosphorescent paint is constantly recharged by the strobing of the light panels, and therefore retains its glow throughout the motion capture session. In addition, because it retains its glow for a period of time, if a performer happens to move so that for a few frames some of the phosphorescent lines are in shadow and not illuminated by the light panels, even though the phosphorescent paint is not

getting fully charged for those frames, the paint will still retain its glow from previous frame times (i.e., when the paint was not in shadow).

As mentioned above, in one embodiment, the light panels 308, 309 are LED arrays. A schematic of an exemplary LED 5 array 501 and associated connection circuitry is illustrated in FIG. 5. The synchronization signals are applied to the LED array 501 via connector J2-1 illustrated to the left in FIG. 5. In one embodiment, the connectors are RJ-45 connectors. The synchronization signal is initially inverted by inverter IC2B 10 and the inverted signal is applied to the base of transistor Q2, causing transistor Q2 to turn on and off in response to the inverted signal. This causes current to flow through resistor R3, thereby causing transistor Q1 to turn on and off. This, in turn, causes the LEDs within the LED array 501 to turn on and 15 off. In one embodiment, the inverted signal from IC2B is applied to three additional LED arrays as indicated in FIG. 5. A plurality of additional connectors J1-1, J1-2, J1-3, and J1-4 are provided for additional light panels (i.e., the light panels may be daisy-chained together via these connectors) using 20 inverters IC2C, IC2D, IC2E and IC2F for buffering. If daisychaining without buffering is desired (e.g. due to critical timing requirements that would be hampered by the IC2 propagation delays), then connector J2-2 can be used. The voltage regular IC1 used for the LED array (shown at the top 25 of FIG. 5) takes a 12V input and produces a 5V regulated output used by IC2. In one embodiment, transistors Q1 is a MOSFET transistor. However, the underlying principles are not limited to any particular type of circuitry.

In one embodiment of the invention, the cameras are configured to capture pictures of the performer's face (e.g., FIG. 6a) in addition to capturing the phosphorescent curves (e.g., FIG. 6b). The pictures of the performer's face may then be used, for example, by animators as a texture map to interpolate between the curves and render and more accurate representation of the performer.

The signal timing illustrated in FIG. 7 represents one such embodiment in which an asymmetric duty cycle is used for the synchronization signal for the cameras (in contrast to the 50% duty cycle shown in FIG. 4). In this embodiment, synchronization signal 2 remains the same as in FIG. 4. The rising edge 722 of synchronization signal 2 illuminates the light panels; the panels remain on for a first time period 723, turn off in response to the falling edge 724 of synchronization signal 2, and remain off for a second time period 725.

By contrast, synchronization signal 1, which is used to control the shutters, has an asymmetric duty cycle. In response to the rising edge 712 of synchronization signal 1, the shutters are closed. The shutters remain closed for a first period of time 713 and are then opened in response to the 50 falling edge 714 of synchronization signal 1. The shutters remain open for a second period of time 715 and are again closed in response to the rising edge of synchronization signal 1. The signals are synchronized so that the rising edge of synchronization signal 1 always coincides with both the ris- 55 ing and the falling edges of synchronization signal 2. As a result, the cameras capture one lit frame during time period 715 (i.e., when the shutters are open the light panels are illuminated) and capture one "glow frame" during time period 716 (i.e., when the shutters are open and the light 60 panels are off).

In one embodiment, the data processing system 310 shown in FIG. 3 separates the lit frames from the glow frames to generate two separate streams of image data, one containing the images of the performer's face and the other containing phosphorescent curve data. The glow frames may then be used to generate the mesh 307 of the performer's face and the

6

lit frames may be used, for example, as a reference for animators (e.g., to interpolate between the curves) and/or as a texture map of the performer's face. The two separate video sequences may be synchronized and viewed next to one another on a computer or other type of image editing device.

Given the significant difference in overall illumination between the lit frames and the glow frames, some cameras may become overdriven during the lit frames if their light sensitivity is turned up very high to accommodate glow frames. Accordingly, in one embodiment of the invention, the sensitivity of the cameras is cycled between lit frames and glow frames. That is, the sensitivity is set to a relatively high level for the glow frames and is then changed to a relatively low level for the lit frames.

Alternatively, if the sensitivity of the cameras 304 cannot be changed on a frame-by-frame basis, one embodiment of the invention changes the amount of time that the shutters are open between the lit frames and the glow frames. FIG. 8 illustrates the timing of one such embodiment in which synchronization signal 1 is adjusted to ensure that the cameras will not be overdriven by the lit frames. Specifically, in this embodiment, during the period of time that synchronization signal 2 is causing the light panels to be illuminated, synchronization signal 1 causes the shutter to be closed for a relatively longer period of time than when synchronization signal 2 is not illuminating the light panels. In FIG. 8, for example, synchronization signal 1 is high during time period 853, thereby closing the shutter, and is low during period 855, thereby opening the shutter. By contrast, during the glow frame, synchronization signal 1 is high for a relatively short period of time 813 and is low for a relatively longer period of time **815**.

In one embodiment, illustrated in FIG. 9, both color and grayscale cameras are used and are synchronized using different synchronization signals. Specifically, in this embodiment, color cameras 914-915 are used to capture the lit frames and grayscale cameras 904-905 are used to capture the phosphorescent curves painted on the performer's face. One of the benefits of this configuration is that grayscale cameras typically have a relatively higher resolution and higher light sensitivity than comparable sensor resolution color cameras, and can therefore capture the phosphorescent curves more precisely. By contrast, color cameras are more well suited to capturing the color and texture of the performer's face. In addition, grayscale cameras may be adjusted to a relatively higher sensitivity than the color cameras.

As illustrated in FIG. 10, in one embodiment, different synchronization signals, 1A and 1B are used to control the grayscale and color cameras, respectively. In FIG. 10, synchronization signals 1A and 1B are 180 degrees out of phase. As a result, the falling edge 1014 of synchronization signal 1B occurs at the same time as the rising edge 1024 of synchronization signal 1A, thereby opening the shutters for the color cameras 914, 915 and closing the shutters for the grayscale cameras 904, 905. Similarly, the falling edge 1012 of synchronization signal 1B occurs at the same time as the falling edge 1022 of synchronization signal 1A, thereby closing the shutters for the color cameras 914, 915 and opening the shutters for the grayscale cameras 904, 905. The synchronization signal 2 for the light panels is not illustrated in FIG. 10 but, in one embodiment, is the same as it is in FIG. 4, turning the light panels on when the color camera shutters are opened and turning the light panels off when the grayscale camera shutters are opened.

When the embodiments of the present invention described herein are implemented in the real world, the synchronization signals (e.g., 321 and 322 of FIG. 3) may require slight delays

between respective edges to accommodate delays in the cameras and LED arrays. For example, on some video cameras, there is a slight delay after rising edge 412 of FIG. 4 before the camera shutter closes. This can be easily accommodated by delaying signal 322 relative to signal 321. Such delays are 5 typically on the order of less than a millisecond. As such, when the system is started, the timing signals may initially need to be precisely calibrated by observing whether the video cameras 304 are capturing completely black frames and adjusting the timing signals 321 and 322 prior to the actual performance.

Although the embodiments described above describe the use of a series of curves painted on the face of a performer, the underlying principles of the invention are not limited to this 15 implementation. For example, instead of curves, one embodiment of the invention uses markers dipped in phosphorescent paint to capture the skeletal motion of the performer using the shutter and light panel synchronization techniques described above (either in lieu of or in addition to the curves on the 20 performer's face, and either in lieu of or in addition to retroreflective markers). Moreover, curves may also be painted on the body and/or clothing of the performer while still complying with the underlying principles of the invention.

In one embodiment, the phosphorescent paint applied to 25 paint is applied as a series of curves on the performer's face. the performer's face is Fantasy F/XT Tube Makeup; Product #: FFX; Color Designation: GL; manufactured by Mehron Inc. of 100 Red Schoolhouse Rd. Chestnut Ridge, N.Y. 10977. In addition, in one embodiment, Basler A311f cameras 304 are used to capture the images of the performer. 30 However, the underlying principles of the invention are not limited to any particular type of phosphorescent paint or camera.

Embodiments of the invention may include various steps as set forth above. The steps may be embodied in machineexecutable instructions which cause a general-purpose or special-purpose processor to perform certain steps. Various elements which are not relevant to the underlying principles of the invention such as computer memory, hard drive, input devices, have been left out of the figures to avoid obscuring the pertinent aspects of the invention.

Alternatively, in one embodiment, the various functional modules illustrated herein and the associated steps may be performed by specific hardware components that contain hardwired logic for performing the steps, such as an application-specific integrated circuit ("ASIC") or by any combination of programmed computer components and custom hardware components.

Elements of the present invention may also be provided as 50 a machine-readable medium for storing the machine-executable instructions. The machine-readable medium may include, but is not limited to, flash memory, optical disks, CD-ROMs, DVD ROMs, RAMs, EPROMs, EEPROMs, magnetic or optical cards, propagation media or other type of 55 machine-readable media suitable for storing electronic instructions. For example, the present invention may be downloaded as a computer program which may be transferred from a remote computer (e.g., a server) to a requesting computer (e.g., a client) by way of data signals embodied in a 60 carrier wave or other propagation medium via a communication link (e.g., a modem or network connection).

Throughout the foregoing description, for the purposes of explanation, numerous specific details were set forth in order to provide a thorough understanding of the present system 65 and method. It will be apparent, however, to one skilled in the art that the system and method may be practiced without some

of these specific details. Accordingly, the scope and spirit of the present invention should be judged in terms of the claims which follow.

What is claimed is:

- 1. A method comprising:
- applying phosphorescent paint to regions of a performer's face and/or body;
- strobing a light source on and off, the light source charging the phosphorescent paint when on; and
- strobing the shutters of a first plurality of cameras synchronously with the strobing of the light source to capture sequences of images of the phosphorescent paint ("glow frames") as the performer moves or changes facial expressions during a performance, wherein the shutters are open when the light source is off and the shutters are closed when the light source is on.
- 2. The method as in claim 1 further comprising:

tracking the motion of the phosphorescent paint over time;

- generating motion data representing the movement of the performer's face and/or body using the tracked movement of the phosphorescent paint.
- 3. The method as in claim 1 wherein the phosphorescent
- 4. The method as in claim 1 wherein the phosphorescent paint is applied as a series of markers at specified areas of the performer's body.
 - 5. The method as in claim 1 further comprising:
 - strobing the shutters of a second plurality of cameras synchronously with the strobing of the light source to capture images of the performer ("lit frames"), wherein the shutters of the second plurality of cameras are open when the light source is on and the shutters of the second plurality of cameras are closed when the light source is
- 6. The method as in claim 5 wherein the first plurality of cameras are grayscale cameras and the second plurality of cameras are color cameras.
- 7. The method as in claim 5 further comprising:

separating the lit frames from the glow frames to generate two separate sets of image data.

- 8. The method as in claim 5 wherein cameras capturing the lit frames have a sensitivity which is different from cameras capturing the glow frames.
 - 9. The method as in claim 5 further comprising:
 - opening the shutters for a first period of time when the light source is on; and
 - opening the shutters for a second period of time when the light source is off;
 - wherein the first and second periods of time are unequal.
- 10. The method as in claim 5 wherein color cameras are used to capture the lit frames and grayscale cameras are used to capture the glow frames.
- 11. The method as in claim 10 wherein the grayscale cameras have a relatively higher sensitivity than the color cam-
- 12. The method as in claim 10 wherein two different synchronization signals are used to control the shutters of the color and grayscale cameras.
- 13. The method as in claim 12 wherein the different synchronization signals are 180 degrees out of phase.
- 14. The method as in claim 1 wherein the light source comprises a light emitting diode (LED) array.
- 15. The method as in claim 1 wherein strobing the shutters comprises opening the shutters for a first period of time and

US 7,605,861 B2

9

closing the shutters for a second period of time, the second period of time being of a different duration than the first period of time.

- **16.** The method as in claim **15** wherein the first period of time is longer than the second period of time.
- 17. The method as in claim $\hat{\bf 1}$ wherein the camera shutters are controlled by synchronization signals from a computer system.
- **18**. The method as in claim **1** wherein strobing the shutters further comprises:
 - opening the shutters for a period of time when the light source is on to capture images of the performer's face and/or body.
- 19. The method as in claim 18 wherein after being opened to capture a lit frame, the shutters are closed and then opened again when the light source is off to capture the next glow frame, and then closed and then opened again when the light source is on to capture the next lit frame.
- 20. The method as in claim 18 wherein strobing the shutters comprises opening the shutters for a first period of time and 20 closing the shutters for a second period of time wherein the first period of time is not equal to the second period of time.
 - 21. The method as in claim 20 further comprising:
 - opening the shutters for a relatively shorter period of time when the light source is on; and
 - opening the shutters for a relatively longer period of time when the light source is off.
 - 22. The method as in claim 18 further comprising: separating the lit frames from the glow frames to generate two separate sets of image data.
 - 23. The method as in claim 18 further comprising: alternating sensitivity, of the cameras between capturing the lit frames and the glow frames.
 - 24. A system comprising:
 - a synchronization signal generator to generate one or more synchronization signals;
 - a light source configured to strobe on and off responsive to a first one of the one or more synchronization signals, the light source charging phosphorescent paint applied to regions of a performer's face and/or body for a motion capture session; and
 - a plurality of cameras having shutters strobed synchronously with the strobing of the light source to capture sequences of images of the phosphorescent paint ("glow frames") as the performer moves or changes facial expressions during a performance, wherein the shutters are open when the light source is off and the shutters are closed when the light source is on.
 - **25**. The system as in claim **24** further comprising:
 - an image processing device generating motion data representing the movement of the performer's face and/or body using the tracked movement of the phosphorescent paint.
- **26**. The system as in claim **24** wherein the phosphorescent ₅₅ paint is applied as a series of curves on the performer's face.
- 27. The system as in claim 24 wherein the phosphorescent paint is applied as a series of markers at specified areas of the performer's body.
 - 28. The system as in claim 24 further comprising:
 - a second plurality of cameras having shutters strobed synchronously with the strobing of the light source to capture images of the performer ("lit frames"), wherein the shutters of the second plurality of cameras are open when the light source is on and the shutters of the second plurality of cameras are closed when the light source is off.

10

- 29. The system as in claim 28 further comprising an image processing device separating the lit frames from the glow frames to generate two separate sets of image data.
- **30**. The system as in claim **28** wherein cameras capturing the lit frames have a sensitivity which is different from cameras capturing the glow frames.
- 31. The system as in claim 28 wherein at least some of the plurality of cameras are controlled to open the shutters for a relatively shorter period of time when the light source is on; and open the shutters for a relatively longer period of time when the light source is off.
- 32. The system as in claim 28 wherein color cameras are used to capture the lit frames and grayscale cameras are used to capture the glow frames.
- 33. The system as in claim 28 wherein the first plurality of cameras are grayscale cameras and the second plurality of cameras are color cameras.
- **34**. The system as in claim **33** wherein the grayscale cameras have a relatively higher sensitivity than the color cameras.
- **35**. The system as in claim **33** wherein two different synchronization signals are used to control the shutters of the color and grayscale cameras.
- 36. The system as in claim 35 wherein the different synchronization signals are 180 degrees out of phase.
 - **37**. The system as in claim **24** wherein the light source comprises a light emitting diode (LED) array comprising at least one LED.
 - 38. The system as in claim 24 wherein strobing the shutters comprises opening the shutters for a first period of time and closing the shutters for a second period of time, the second period of time being of a different duration than the first period of time.
 - **39**. The system as in claim **38** wherein the first period of time is longer than the second period of time.
 - **40**. The system as in claim **24** wherein the camera shutters are controlled by synchronization signals from a computer system.
- 41. The system as in claim 24 wherein strobing the shutters further comprises:
 - opening the shutters for a period of time when the light source is on to capture images of the performer's face and/or body.
- 42. The system as in claim 41 wherein after being opened to capture a lit frame, the shutters are closed and then opened again when the light source is off to capture the next glow frame, and then closed and then opened again when the light source is on to capture the next lit frame.
- **43**. The system as in claim **42** wherein the image processing device separates the lit frames from the glow frames to generate two separate sets of image data.
- **44**. The system as in claim **41** wherein strobing the shutters comprises opening the shutters for a first period of time and closing the shutters for a second period of time, wherein the first period of time is not equal to the second period of time.
- **45**. The system as in claim **44** wherein the shutters are opened for a relatively shorter period of time when the light source is on; and
- wherein the shutters are opened for a relatively longer period of time when the light source is off.
- **46**. The system as in claim **41** wherein sensitivity of the cameras is alternated between capturing the lit frames and the glow frames.
 - **47**. A method comprising:
 - applying phosphorescent paint to regions of a face and/or body or a performer;

US 7,605,861 B2

11

strobing a light source on and off, the light source charging the phosphorescent paint when on; and

strobing the shutters of a plurality of cameras synchronously with the strobing of the light source to capture a sequence of images of the phosphorescent paint ("glow frames) and images of the object in motion ("lit frames"), wherein the shutters are closed and then opened when the light source is off to capture the glow frames and then closed and then opened when the light source is on to capture the lit frames.

48. The method as in claim **47** further comprising:

tracking the motion of the phosphorescent paint over time;

generating motion data representing the movement of the object using the tracked movement of the phosphorescent paint.

12

49. The method as in claim **47** wherein strobing the shutters comprises opening the shutters for a first period of time and closing the shutters for a second period of time wherein the first period of time is not equal to the second period of time.

50. The method as in claim **49** further comprising: opening the shutters for a relatively shorter period of time

when the light source is on; and

opening the shutters for a relatively longer period of time when the light source is off.

51. The method as in claim **47** further comprising: separating the lit frames from the glow frames to generate two separate sets of image data.

52. The method as in claim **47** further comprising: alternating sensitivity of the cameras between capturing the lit frames and the glow frames.

* * * * *

Exhibit 3

US008659668B2

(12) United States Patent

Cotter et al.

(54) APPARATUS AND METHOD FOR PERFORMING MOTION CAPTURE USING A RANDOM PATTERN ON CAPTURE SURFACES

(75) Inventors: **Tim S. Cotter**, Sunnyvale, CA (US); **Stephen G. Perlman**, Palo Alto, CA

(US); John Speck, Sunnyvale, CA (US); Roger Van der Laan, Menlo Park, CA (US); Kenneth A. Pearce, San

Francisco, CA (US); Greg LaSalle, San

Francisco, CA (US)

(73) Assignee: Rearden, LLC, San Francisco, CA (US)

(*) Notice: Subject to any disclaimer, the term of this

patent is extended or adjusted under 35

U.S.C. 154(b) by 940 days.

This patent is subject to a terminal dis-

claimer.

(21) Appl. No.: 11/255,854

(22) Filed: Oct. 20, 2005

(65) **Prior Publication Data**

US 2007/0091178 A1 Apr. 26, 2007

Related U.S. Application Data

(60) Provisional application No. 60/724,565, filed on Oct. 7, 2005.

(51)	Int. Cl.	
	H04N 5/225	(2006.01)
	H04N 5/335	(2011.01)
	H04N 5/262	(2006.01)
	G06K 9/00	(2006.01)

(52) U.S. Cl.

USPC **348/207.99**; 348/162; 348/239; 348/370; 348/371; 382/103; 382/108; 382/154

(10) Patent No.: US 8,659,668 B2

(45) **Date of Patent:**

*Feb. 25, 2014

(58) Field of Classification Search

See application file for complete search history.

(56) References Cited

U.S. PATENT DOCUMENTS

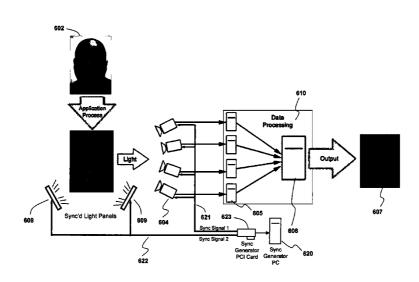
3,335,716 A 3,699,856 A	8/1967 10/1972 6/1983	Chabot et al. Davidson et al 348/162			
(Continued)					

FOREIGN PATENT DOCUMENTS

WO WO-9955220 11/1999 WO WO 2006/011153 2/2006

OTHER PUBLICATIONS

Guenter et al., "Making Faces", International Conference on Computer Graphics and Interactive Techniques, Proceedings of the 25th annual conference on Computer graphics and interactive techniques, pp. 55-66, 1998.*


(Continued)

Primary Examiner — James Hannett
Assistant Examiner — Quang Le
(74) Attorney, Agent, or Firm — Blakely, Sokoloff, Taylor &
Zafman, LLP

(57) ABSTRACT

A method is described comprising: applying a random pattern to specified regions of an object; tracking the movement of the random pattern during a motion capture session; and generating motion data representing the movement of the object using the tracked movement of the random pattern.

58 Claims, 30 Drawing Sheets

US 8,659,668 B2

Page 2

(56) References Cited

U.S. PATENT DOCUMENTS

5,235,416	A *	8/1993	Stanhope 348/77		
5,304,809	A	4/1994	Wickersheim		
5,420,622	Α	5/1995	Faroudja		
5,480,341	A	1/1996	Plakos et al.		
5,519,826	A	5/1996	Harper et al.		
5,569,317	A *	10/1996	Sarada et al 524/111		
5,575,719	A	11/1996	Gobush et al.		
5,689,577	Α	11/1997	Arata		
5,699,798	A	12/1997	Hochman et al.		
5,852,672	Α	12/1998	Lu		
5,878,283	Α	3/1999	House et al.		
5,966,129	Α	10/1999	Matsukuma et al.		
5,969,822	A	10/1999	Fright et al.		
6,020,892	A	2/2000	Dillon		
6,151,118	Α	11/2000	Norita et al.		
6,241,622	B1	6/2001	Gobush		
6,513,921	B1 *	2/2003	Houle 347/96		
6,533,674	B1	3/2003	Gobush		
6,592,465	B2 *	7/2003	Lutz et al 473/198		
6,633,294	B1 *	10/2003	Rosenthal et al 345/474		
6,685,326	B2	2/2004	Debevec		
6,758,759	B2	7/2004	Gobush et al.		
6,850,872	B1	2/2005	Marschner et al.		
7,044,613	B2	5/2006	Debevec		
7,068,277	B2 *	6/2006	Menache 345/473		
7,075,254	B2	7/2006	Chitta et al.		
7,086,954	B2	8/2006	Gobush et al.		
7,089,319	B2	8/2006	Lysenko et al.		
7,184,047	B1	2/2007	Crampton		
7,218,320	B2 *	5/2007	Gordon et al 345/419		
7,257,237	B1*	8/2007	Luck et al 382/103		
7,369,681	B2 *	5/2008	Foth et al 382/103		
7,426,422	B2	9/2008	Carman et al.		
7,436,403	B2	10/2008	Debevec		
7,548,272	B2 *	6/2009	Perlman et al 348/371		
7,587,520	В1	9/2009	Kent et al.		
8,144,153	B1	3/2012	Sullivan et al.		
2002/0060649	A1	5/2002	Perlman		
2003/0095186	A1*	5/2003	Aman et al 348/162		
2004/0017313	A1	1/2004	Menache		
2004/0072091	A1	4/2004	Mochizuki et al.		
2004/0119716	$\mathbf{A}1$	6/2004	Park et al.		
2004/0155962	A1*	8/2004	Marks 348/169		
2005/0040085	$\mathbf{A1}$	2/2005	Carman et al.		
2005/0104543	A1	5/2005	Kazanov et al.		
2005/0114073	A1	5/2005	Gobush		
2005/0143183	A1	6/2005	Shirai		
2005/0161118	A1	7/2005	Carman et al.		
2005/0168578	A1	8/2005	Gobush		
2005/0174771	A1	8/2005	Conner		
2005/0215336	A1	9/2005	Ueda et al.		
2005/0215337	A1	9/2005	Shirai		
2006/0061680	A1	3/2006	Madhavan et al.		
2006/0077258	A1	4/2006	Allen et al.		
2006/0192785	A1*	8/2006	Marschner et al 345/473		
2006/0203096	A1*	9/2006	LaSalle et al 348/208.14		
2007/0058839	A1*	3/2007	Echegaray et al 382/103		
2007/0060410	A1	3/2007	Gobush		
2007/0200930	A1*	8/2007	Gordon 348/159		
2007/0206832	A1*	9/2007	Gordon et al 382/103		
2007/0273951	A1	11/2007	Ribi		
2007/0279494	A1	12/2007	Aman et al.		
2008/0100622	A1*	5/2008	Gordon 345/427		
2010/0002934	A1*	1/2010	Sullivan et al 382/154		
	OT	HER PUI	BLICATIONS		

Radovan et al., "Facial animation in a nutshell: past, present and future", Proceedings of the 2006 annual research conference of the South African institute of computer scientists and information technologists on IT research in developing couuntries, p. 71-79, Oct. 9-11, 2006, Somerset West, South Africa.*

Chuang and Bregler, Performance driven facial animation using blendshape interpolation, Computer Science Department, Stanford University.* Wang et al., "Assembling an expressive facial animation system", ACM Siggraph Video Game Symposium, Proceedings of the 2007 ACM SIGGRAPH symposium on Video games, pp. 21-26, 2007.* http://dictionary.reference.com/browse/random.*

Zhang et al., "Spacetime Faces: High Resolution Capture for Modeling and Animation", 11 pages, ACM Transactions on Graphics, 2004, University of Washington.

Guskov et al., "Direct Pattern Tracking on Flexible Geometry", 6 pages, Winter School of Computer Graphics, 2002, University of Michigan.

Bourke, P., "Cross Correlation" Auto Correctation—2D Pattern Identification, Aug. 1996, http://astronomy.swin.edu.au/~pbourke/other/correlat/printed on Oct. 19, 2005.

Lin, et al., "MIRROR Mo-Cap: Automatic and efficient capture of dense 3d facial motion parameters from video" the Visual Computer, International Journal of Computer Graphics, vol. 21, No. 6, Jul. 1, 2005, pp. 355-372. ISSN: 1432-8726, DOI: 10.1007/200371-005-0291-5.

Partial European Search Report from foreign counterpart European Patent Application No. 061217675 mailed Oct. 12, 2011, 5 pages. Provisional U.S. Appl. No. 60/711,923, filed Aug. 26, 2005, 4 pgs. Provisional U.S. Appl. No. 60/711,905, filed Aug. 26, 2005, 4 pgs. Office Action from Chinese patent application No. 200580030846.9, mailed May 25, 2010., 9.

First Office Action from Japanese. Patent Application No. 2008-500696, mailed Jul. 26, 2010, 4 pgs.

Allen, Bret, et al., "Articulated Body Deformation from Range Scan Data", *ACM Transactions on Graphics (TOG)*, vol. 21, No. 3, (Jul. 2002), 612-619.

Curless, Brian, et al., "A Volumetric Method for Building Complex Models from Range Images", *Proceedings of the 23rd Annual Conference on Computer Graphics and Interactive Techniques*, (1996), 1-10.

Viinendaaru, Van H., "Image Information Processing Method, System and Program Utilizing the Method", *Patent Abstracts of Japan*, Pub. No. 2003-106812, filed Jun. 21, 2002., (Apr. 9, 2003).

Yuusjke, N., "Tomographic Image Equipment", *Patent Abstacts of Japan*—Publication No. 10-005229, filed Jan. 12, 1996., (Jan. 13, 1998).

Notice of Allowance from U.S. Appl. No. 11/007,628, mailed May 15, 2009, 9 pgs.

Notice of Allowance from U.S. Appl. No. 11/448,127, mailed Mar. 9, 2009, pp. 7.

Office Action from U.S. Appl. No. 11/449,131, mailed Jun. 10,2009, $10~\mathrm{pgs}$.

Examination Report from counterpart New Zealand Patent Application No. 553106, mailed Jun. 22, 2009, 2 pgs.

Graham, M Ian, "The Power of Texture: A New Approach for Surface Capture of the Human Hand", Carnegie Mellon University Computer Science Department, (Apr. 30, 2004), 1-23.

Motionanalysis, "Hawk Digital System", www.motionanalysis.com/applications/animation/games/hawksytem.html, 4 pgs., printed on Feb. 25, 2005, 4.

Motionanalysis, "The Motion Capture Leader, The Undisputed Leader for 3D Optical Motion Capture System", www. motionanaylsis.com/, (Jan. 27, 2005), 1.

Motionanalysis "Eagle Digital System", www.motionanalysis.com/applications/animation/games/eaglesystem.html, 4 pgs., printed on Feb. 25, 2005, 4.

Motionanalysis "Falcon Analog System", www.motionanalysis.com/applications/animation/games/falconsystem.html, 4 pgs., printed on Feb. 25, 2005, 41.

Motionanalysis "Video Game Products, Products", www. motionanaylsis.com/applications/animation/games/products.html, printed Feb. 25, 2005, 1.

Parke, Frederick I., "Computer Generated Animating of Faces", SIG-GRAPH 1972, (1972), 451-457.

Scott, Remington, "Sparking Life Notes on the Performance Capture Sessions for The Lord of the Rings: The Two Towers", *ACM SIG-GRAPH*, vol. 37, No. 4, (Nov. 2003), 17-21.

Vicon, "Vicon Motion Systems // MX13, MX13 Camera, The MX13 1.3 Million-pixel Motion Capture Camera", www.vicon.com/jsp/products/prdouct-detail.jsp?id=170, (Feb. 25, 2005), 2.

US 8,659,668 B2

Page 3

(56) References Cited

OTHER PUBLICATIONS

Vicon, "Vicon Motion Systems // MX3, MX3 Camera, The MX3 0.3 Million-pixel Motion Capture Camera", www.vicon.com/jsp/products/product-detail.jsp?id=173, (Feb. 25, 2005), 2.

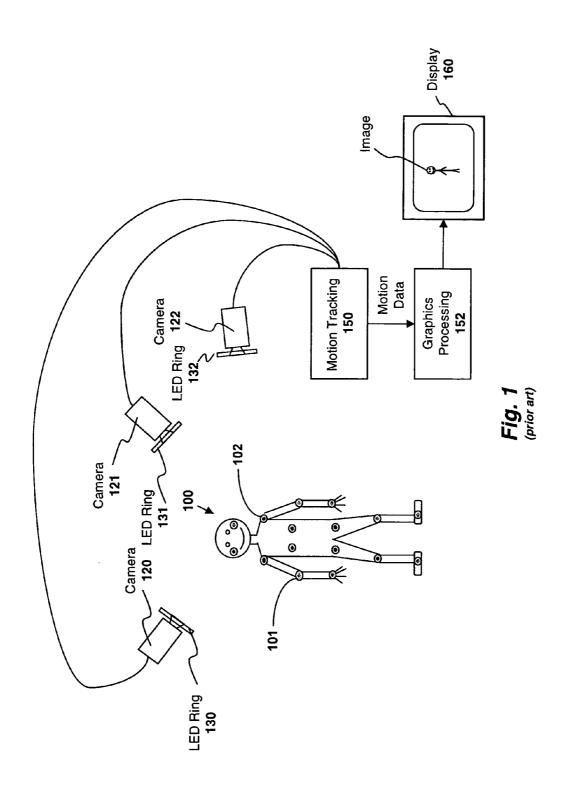
Vicon, "Vicon Motion Systems // MX40, MX40 Camera, The MX40 4 Million-pixel Motion Capture Camera", www.vicon.com/jsp/products/product-detail.jsp?id=167, 2 pgs., printed on Feb. 25, 2005., 2. Vicon, "Vicon motion Systems // SV Cam", www.vicon.com/jsp/products/product-detail.jsp?id+189, (Feb. 25, 2005), 1.

Vicon, "Vicon Systems Ltd.", www.vicon.com/jsp/index.jsp, cited as Vicon Motion Picture Ltd. but that was named incorrectly. Correct title is Vicon Systems Ltd.-cv, (Feb. 25, 2005), 2 pages.

Vicon-Products, "MX System: Cameras, The Most Powerful, Practical and Versatile Range of Motion Capture Cameras", www.vicon. com/jsp/products/product-category.jsp?cat=cameras, (Feb. 25, 2006), 1.

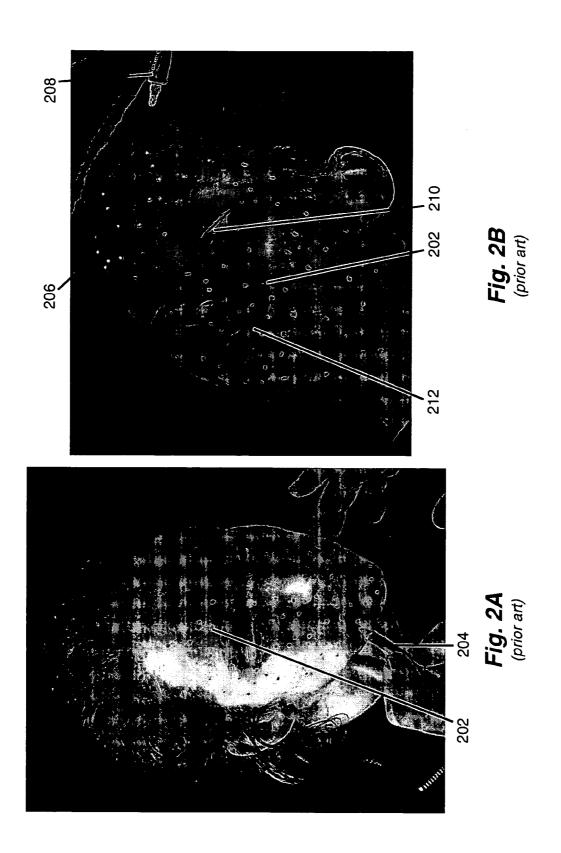
Vicon-Products, "Vicon MX: System Overview", www.vicon.com/jsp/products/product-overview.jsp, (Feb. 25, 2005), 2.

Notice of Allowance from U.S. Appl. No. 11/449,043, mailed Apr. 30 2009, 15 pgs.

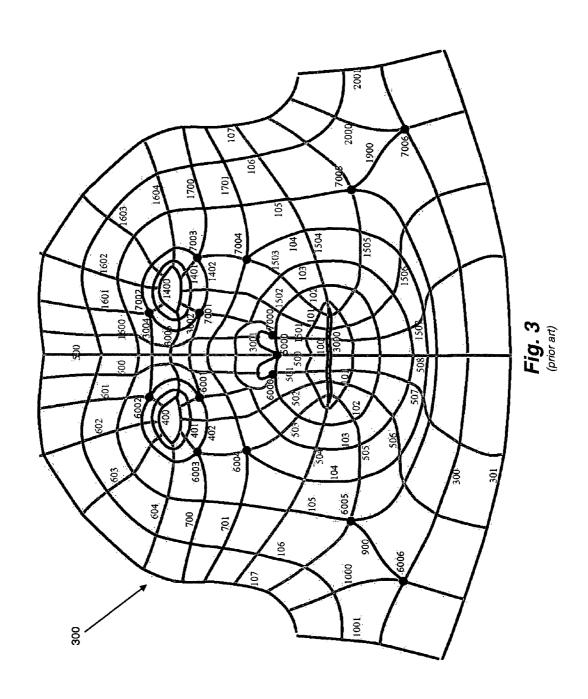

Office Action from U.S. Appl. No. 12/455,771, mailed May 22, 2012, 24 pages.

Frauenfelder, M., "G-Cluster Makes Games to Go", The Feature: It's All About the Mobile Internet, http://www.thefeaturearchives.com/13267.html, 3 pages, 2001.

* cited by examiner


Feb. 25, 2014

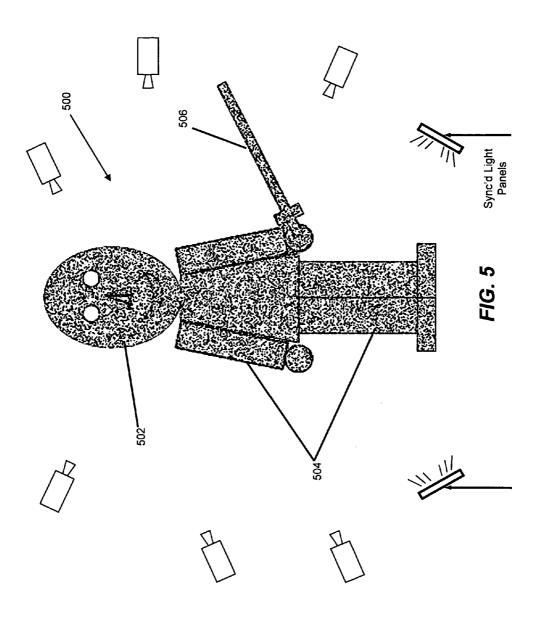
Sheet 1 of 30



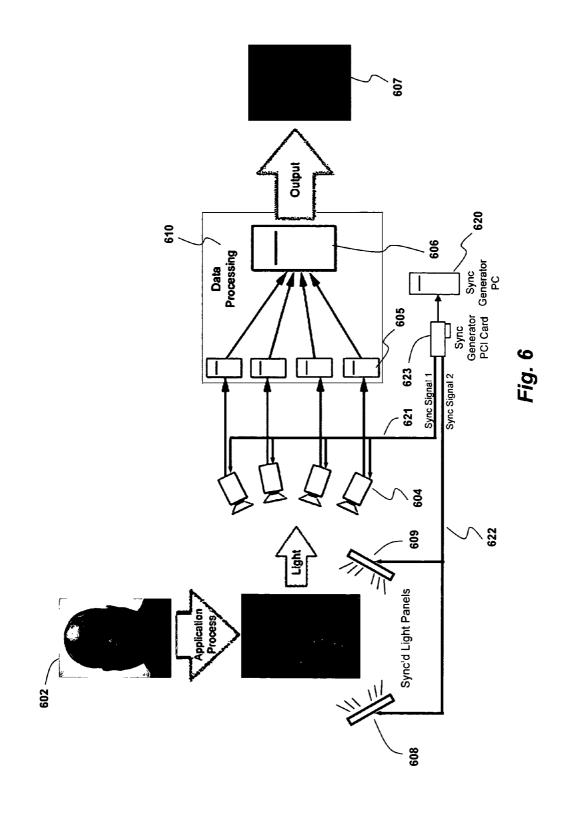
Feb. 25, 2014

Sheet 2 of 30

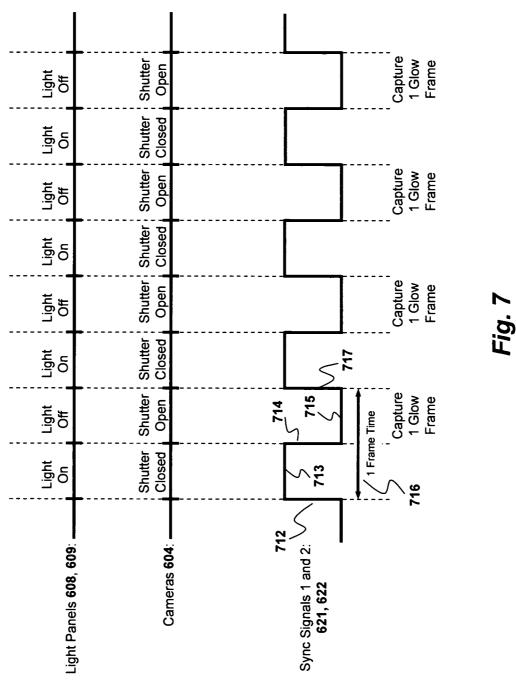
U.S. Patent Feb. 25, 2014 Sheet 3 of 30



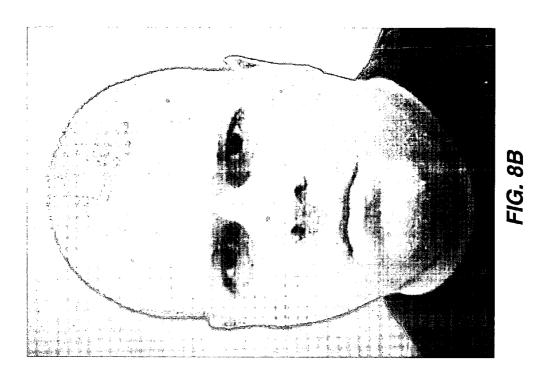
Feb. 25, 2014 Sheet 4 of 30

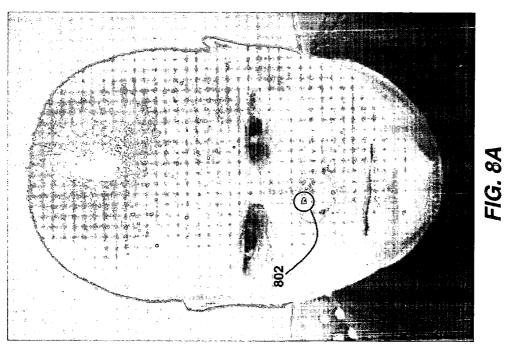

Feb. 25, 2014

Sheet 5 of 30

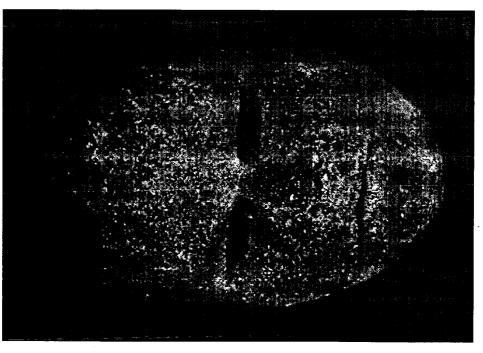

Feb. 25, 2014

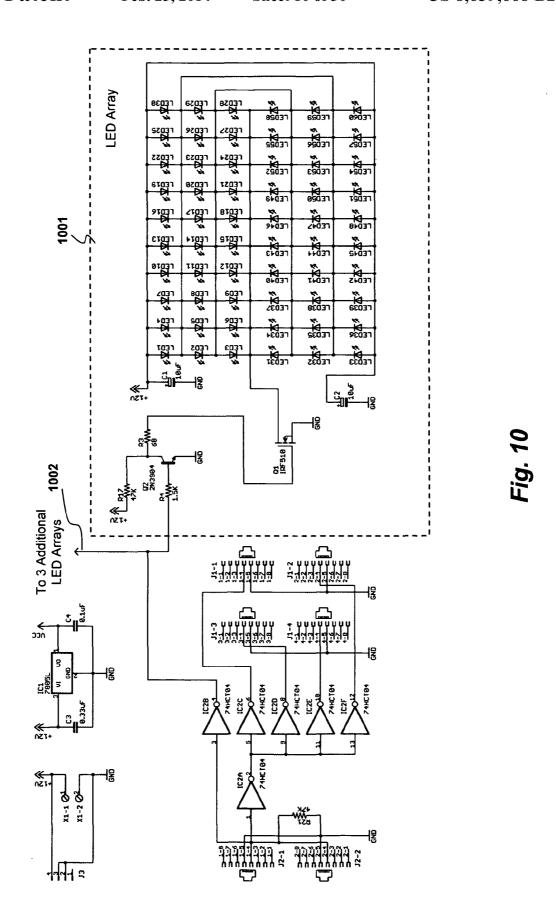
Sheet 6 of 30




Feb. 25, 2014

Sheet 7 of 30


U.S. Patent Feb. 25, 2014 Sheet 8 of 30


U.S. Patent Feb. 25, 2014 Sheet 9 of 30

Feb. 25, 2014

Sheet 10 of 30

Feb. 25, 2014

Sheet 11 of 30

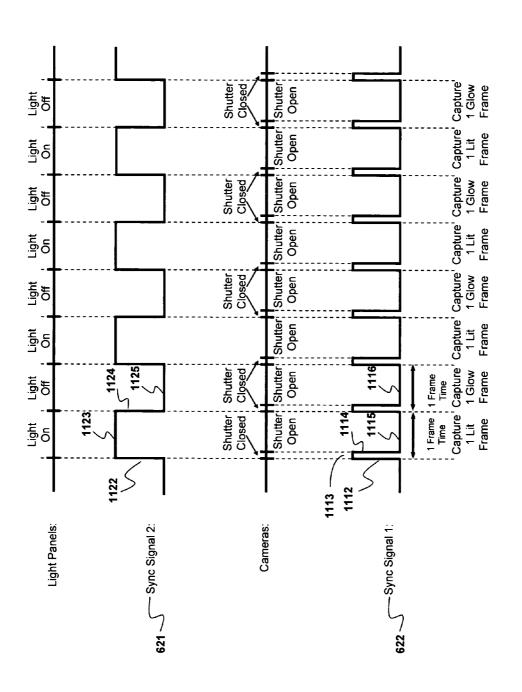


Fig. 11

Feb. 25, 2014

Sheet 12 of 30

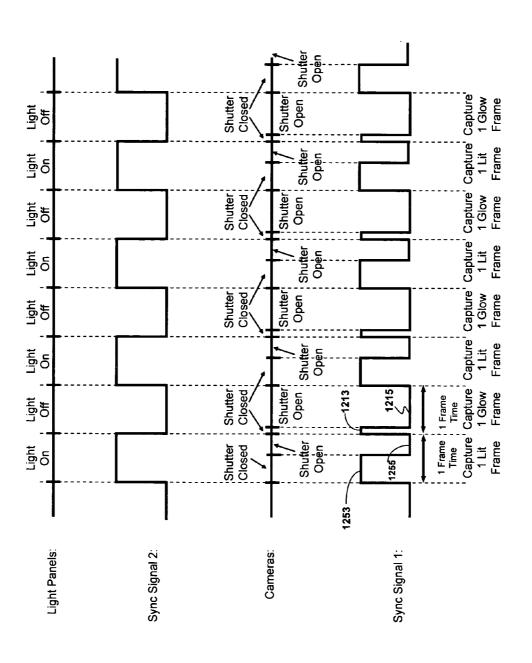
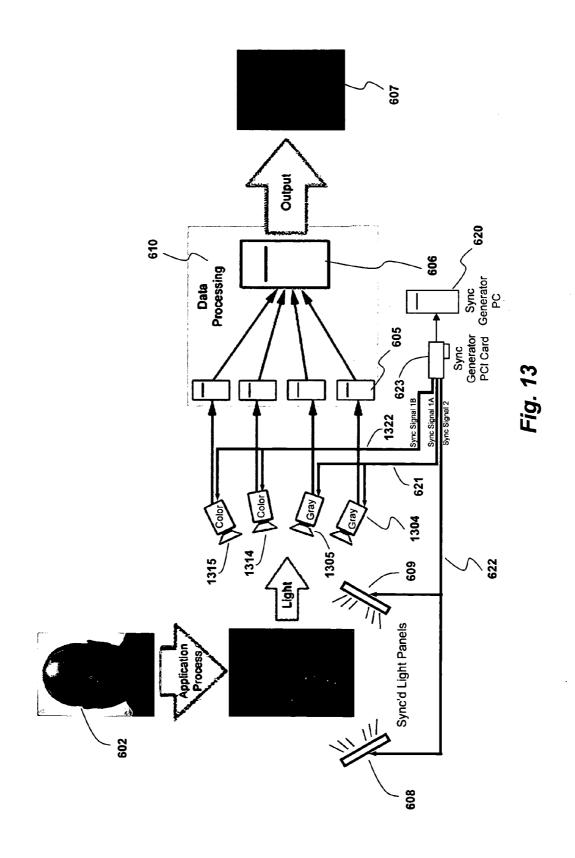
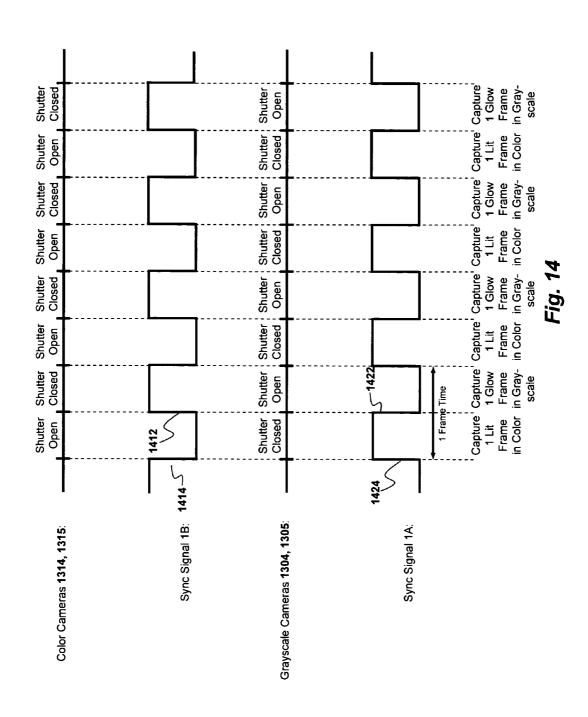
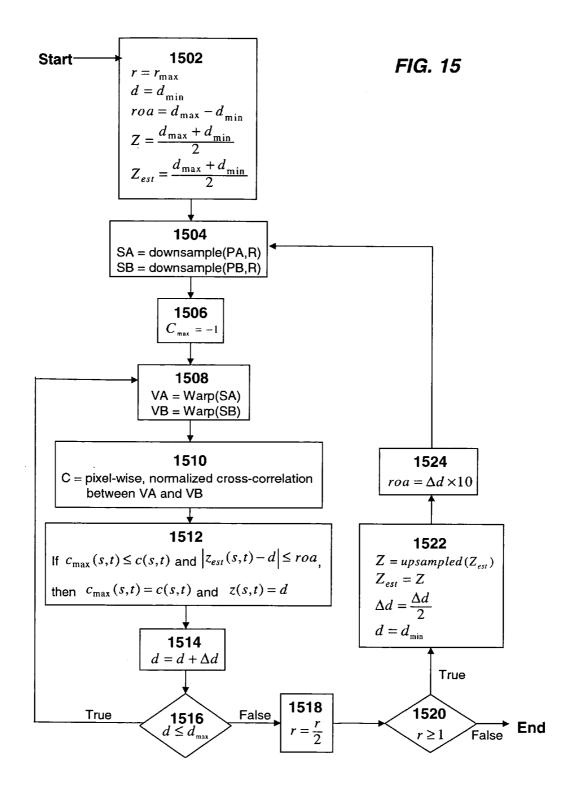



Fig. 12

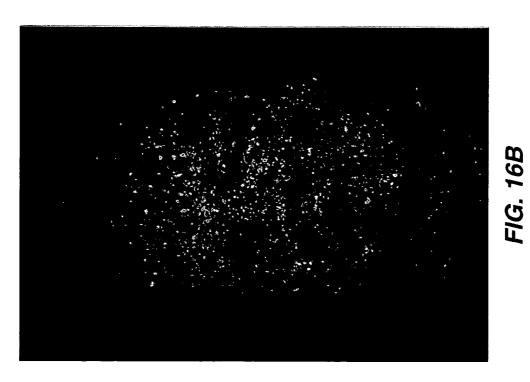

Feb. 25, 2014

Sheet 13 of 30


Feb. 25, 2014

Sheet 14 of 30

Feb. 25, 2014


Sheet 15 of 30

Feb. 25, 2014

Sheet 16 of 30

US 8,659,668 B2

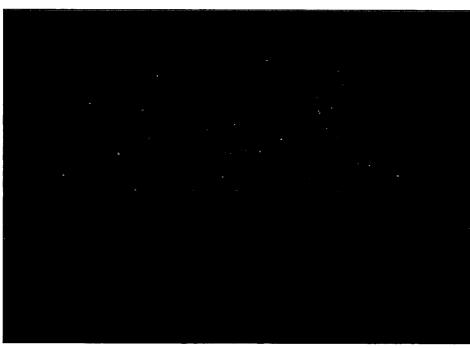


FIG. 16A

Feb. 25, 2014

Sheet 17 of 30

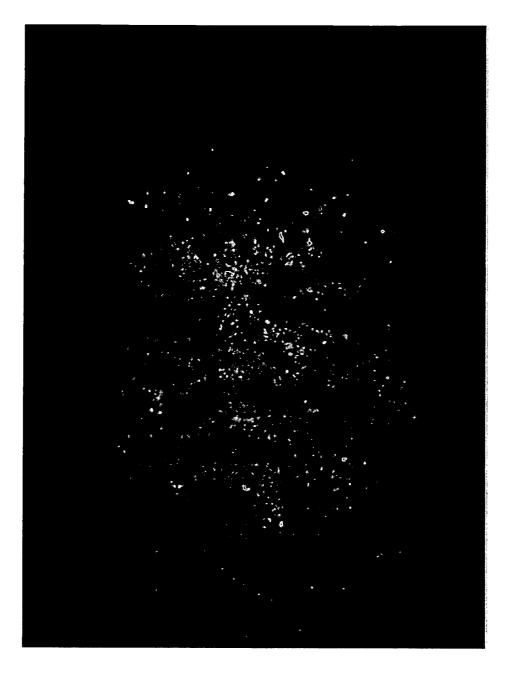
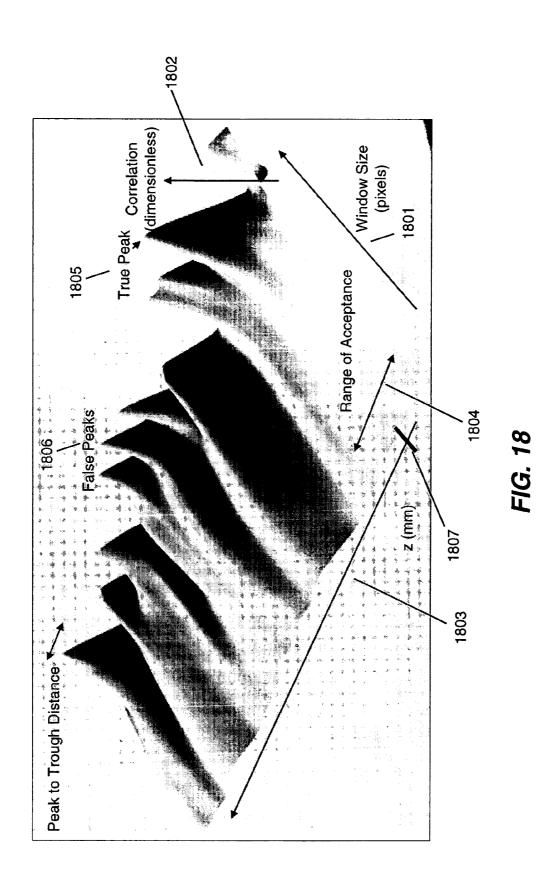
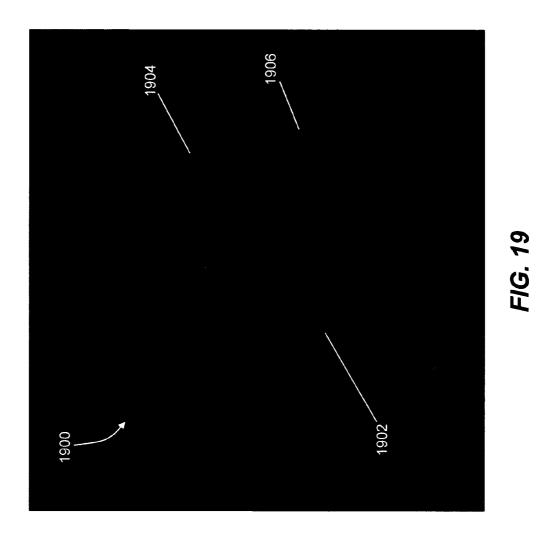



FIG. 17


Feb. 25, 2014

Sheet 18 of 30

Feb. 25, 2014

Sheet 19 of 30

U.S. Patent Feb. 25, 2014 Sheet 20 of 30

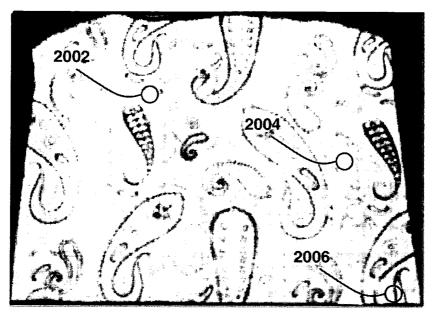


FIG. 20A

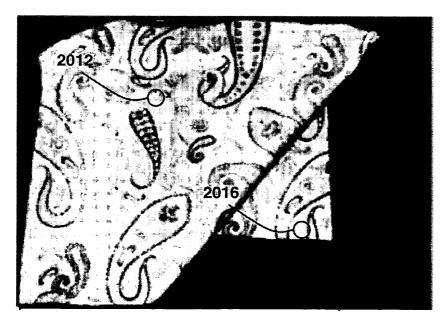


FIG. 20B

U.S. Patent Feb. 25, 2014 Sheet 21 of 30

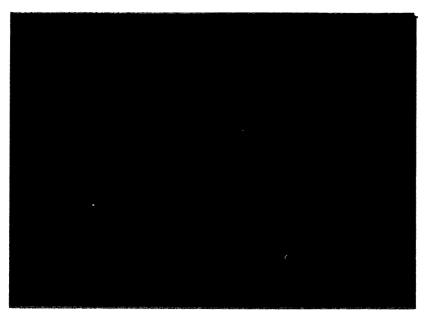
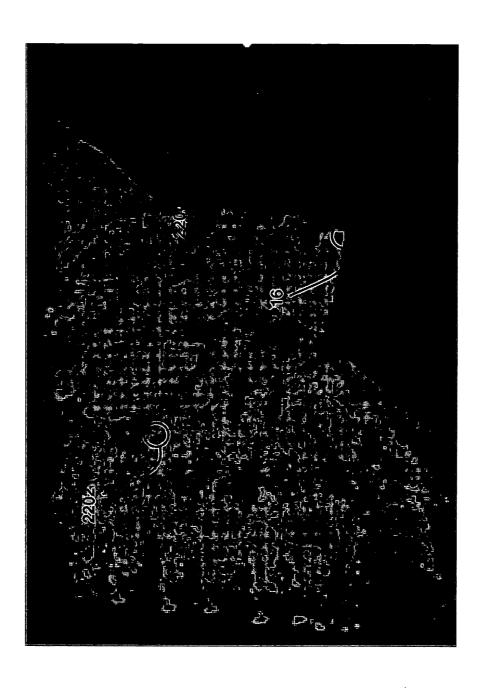
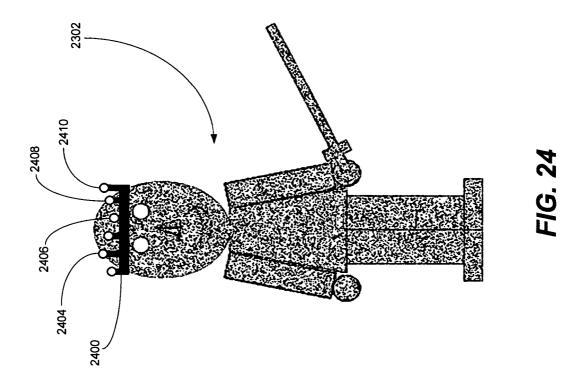



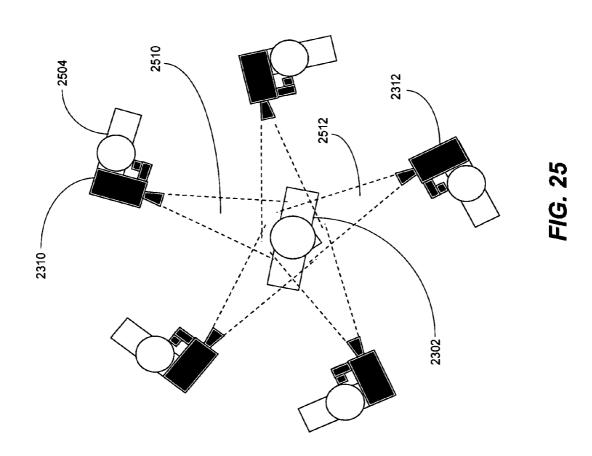
FIG. 21A

FIG. 21B

U.S. Patent Feb. 25, 2014 Sheet 22 of 30

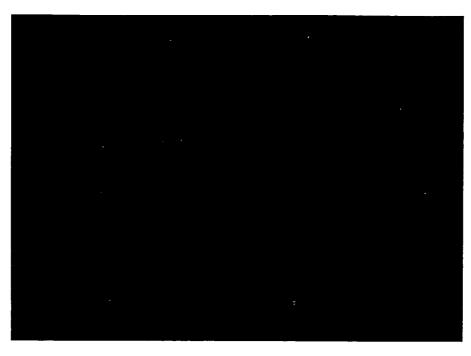

Feb. 25, 2014

Sheet 23 of 30


Feb. 25, 2014

Sheet 24 of 30

Feb. 25, 2014


Sheet 25 of 30

Feb. 25, 2014

Sheet 26 of 30

US 8,659,668 B2

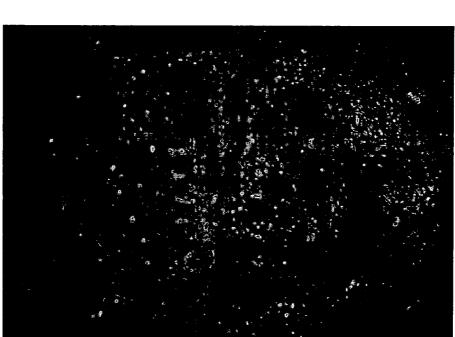


FIG. 26B

FIG. 26A

Feb. 25, 2014

Sheet 27 of 30

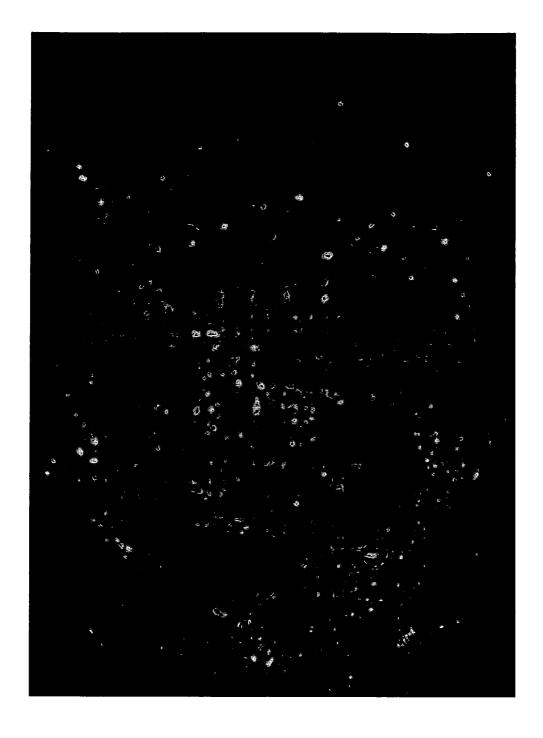
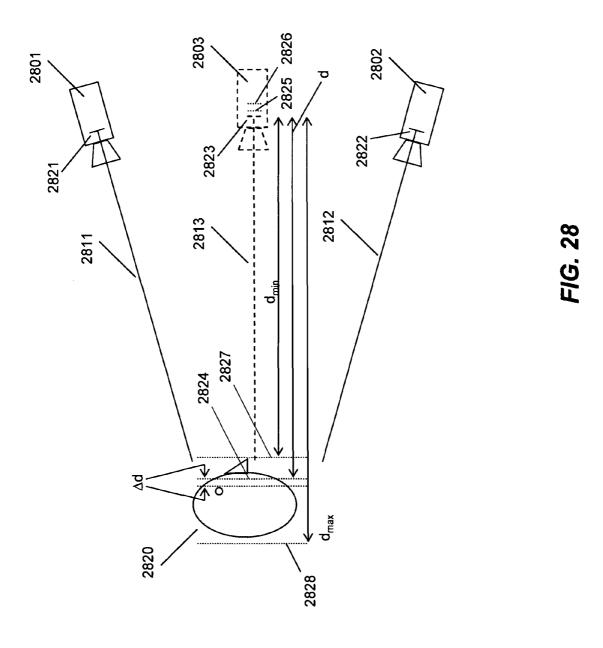
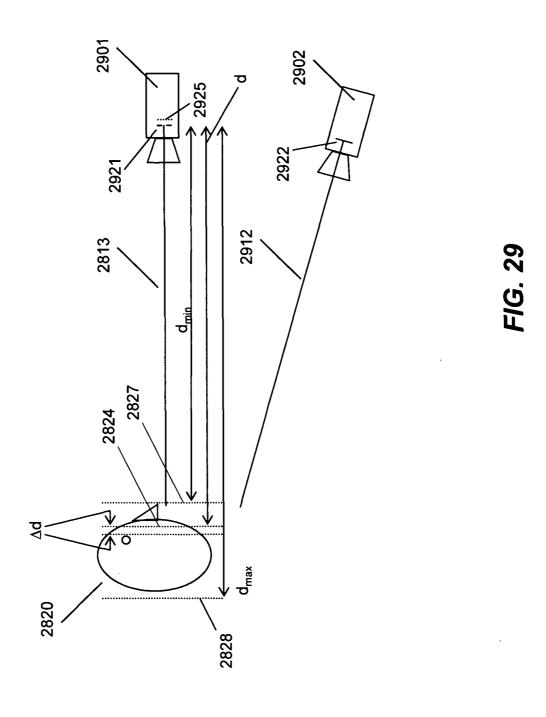
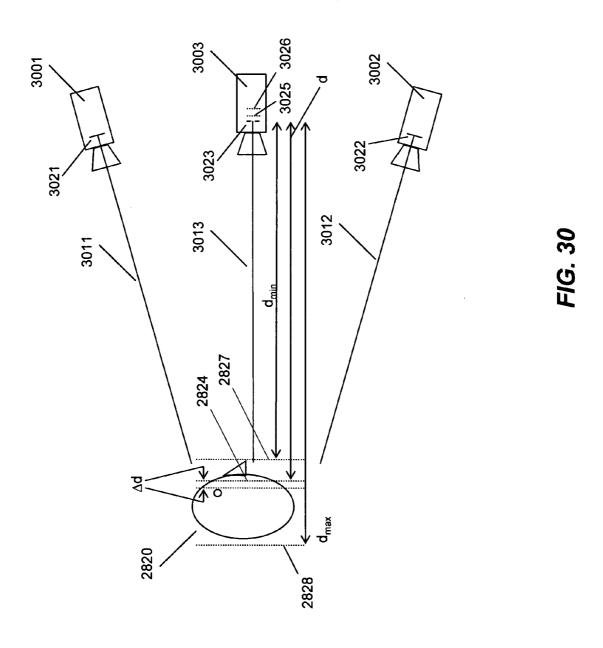



FIG. 27


Feb. 25, 2014

Sheet 28 of 30


Feb. 25, 2014

Sheet 29 of 30

Feb. 25, 2014

Sheet 30 of 30

1

APPARATUS AND METHOD FOR PERFORMING MOTION CAPTURE USING A RANDOM PATTERN ON CAPTURE SURFACES

This application claims priority from Provisional Application Ser. No. 60/724,565, filed Oct. 7, 2005, entitled "Apparatus and Method for Performing Motion Capture Using a Random Pattern On Capture Surfaces."

BACKGROUND OF THE INVENTION

1. Field of the Invention

This invention relates generally to the field of motion capture. More particularly, the invention relates to an improved 15 apparatus and method for performing motion capture using a random pattern of paint applied to a portion of a performer's face, body, clothing, and/or props.

2. Description of the Related Art

"Motion capture" refers generally to the tracking and 20 recording of human and animal motion. Motion capture systems are used for a variety of applications including, for example, video games and computer-generated movies. In a typical motion capture session, the motion of a "performer" is captured and translated to a computer-generated character.

As illustrated in FIG. 1 in a traditional motion capture system, a plurality of motion tracking "markers" (e.g., markers 101, 102) are attached at various points on a performer's 100's body. The points are typically selected based on the known limitations of human anatomy. Different types of 30 motion capture markers are used for different motion capture systems. For example, in a "magnetic" motion capture system, the motion markers attached to the performer are active coils which generate measurable disruptions x, y, z and yaw, pitch, roll in a magnetic field.

By contrast, in an optical motion capture system, such as that illustrated in FIG. 1, the markers 101, 102 are passive spheres comprised of retroreflective material, i.e., a material which reflects light back in the direction from which it came, ideally over a wide range of angles of incidence. A plurality of 40 cameras 120, 121, 122, each with a ring of LEDs 130, 131, 132 around its lens, are positioned to capture the LED light reflected back from the retroreflective markers 101, 102 and other markers on the performer. Ideally, the retroreflected LED light is much brighter than any other light source in the 45 room. Typically, a thresholding function is applied by the cameras 120, 121, 122 to reject all light below a specified level of brightness which, ideally, isolates the light reflected off of the reflective markers from any other light in the room and the cameras 120, 121, 122 only capture the light from the 50 markers 101, 102 and other markers on the performer.

A motion tracking unit 150 coupled to the cameras is programmed with the relative position of each of the markers 101, 102 and/or the known limitations of the performer's body. Using this information and the visual data provided 55 from the cameras 120-122, the motion tracking unit 150 generates artificial motion data representing the movement of the performer during the motion capture session.

A graphics processing unit **152** renders an animated representation of the performer on a computer display **160** (or 60 similar display device) using the motion data. For example, the graphics processing unit **152** may apply the captured motion of the performer to different animated characters and/or to include the animated characters in different computergenerated scenes. In one implementation, the motion tracking 65 unit **150** and the graphics processing unit **152** are programmable cards coupled to the bus of a computer (e.g., such as the

2

PCI and AGP buses found in many personal computers). One well known company which produces motion capture systems is Motion Analysis Corporation (see, e.g., www.motionanalysis.com).

One problem which exists with current marker-based motion capture systems is that when the markers move out of range of the cameras, the motion tracking unit **150** may lose track of the markers. For example, if a performer lays down on the floor on his/her stomach (thereby covering a number of markers), moves around on the floor and then stands back up, the motion tracking unit **150** may not be capable of re-identifying all of the markers.

Another problem which exists with current marker-based motion capture systems is that resolution of the image capture is limited to the precision of the pattern of markers. In addition, the time required to apply the markers on to a performer is long and tedious, as the application of the markers must be precise and when a large number of markers are used, for example on a face, in practice, the markers are very small (e.g. on the order of 1-2 mm in diameter). FIGS. 2a and 2b illustrate the tediousness of the process of applying markers to a performer. The positions 202 for the application of the markers 206 must first be created with a makeup pencil 204 or other fine tip marker. Once the pattern has been created, the markers 206 are applied. Because the markers 206 are only 1-2 mm in diameter, the markers 206 must be applied to the positions 202 using tweezers (not shown) and an adhesive 208.

Another problem with current marker-based motion systems is that application of the markers must be kept away from certain areas of the performer, such as the eyes 210 and the lips 212 of a performer, because the markers may impede the free motion of these areas. In addition, secretions (e.g., tears, saliva) and extreme deformations of the skin (e.g., pursing the lips 212) may cause the adhesive 208 to be ineffective in bonding the markers 206 on certain places of the skin. Additionally, during performances with current motion capture systems, markers may fall off or be smudged such that they change position on the performer, thus requiring a halt in the performance capture session (and a waste of crew and equipment resources) to tediously reapply the markers and often recalibrate the system.

Another current approach to accomplishing motion capture is to optically project a pattern or sequence of patterns (typically a grid of lines or other patterns) onto the performer. One or more cameras is then used to capture the resulting deformation of the patterns due to the contours of the performer, and then through subsequent processing a point cloud representative of the surface of the performer is calculated. Eyetronics-3d of Redondo Beach, Calif. is one company that utilizes such an approach for motion capture.

Although projected-pattern motion capture is quite useful for high-resolution surface capture, it suffers from a number of significant limitations in a motion capture production environment. For one, the projected pattern typically is limited to a fairly small area. If the performer moves out of the area of the projection, no capture is possible. Also, the projection is only in focus within a given depth of field, so if the performer moves too close or too far from the projected pattern, the pattern will be blurry and resolution will be lost. Further, if an object obstructs the projection (e.g. if the performer raises an arm and obstructs the projection from reaching the performer's face), then the obstruction region cannot be captured. And finally, as the captured surface deforms through successive frames (e.g. if the performer smiles and the cheek compresses), the motion capture system is not able to track points on the captured surface to see where they moved from frame

3

to frame. It is only able to capture what the new geometry of the surface is after the deformation. Markers can be placed on the surface and can be tracked as the surface deforms, but the tracking will be of no higher resolution than that of the markers. For example, such a system is described in the paper "Spacetime Faces: High Resolution Capture for Modeling and Animation", by Li Zhang, et. al., of University of Washington.

As computer-generated animations becomes more realistic, cloth animation is used increasingly. Cloth simulation is quite complex because so many physical factors impact the simulation. This results in typically very long computation time for cloth simulation and many successive iterations of the simulation until the cloth achieves the look desired for the animation.

There have been a number of prior art efforts to capture cloth (and similar deformable and foldable surfaces) using motion capture techniques. For example, in the paper "Direct Pattern Tracking On Flexible Geometry" by Igor Guskow of 20 University of Michigan, Ann Arbor. et. al, an approach is proposed where a regular grid is drawn on cloth and captured. More sophisticated approaches are described in other papers by Igor Guskow, et. al., such as "Multi-scale Features for Approximate Alignment of Point-based Surfaces", "Extract-25 ing Animated Meshes with Adaptive Motion Estimation", and "Non-Replicating Indexing for Out-of-Core Processing of Semi-Regular Triangular Surface Meshes". But none of these approaches are suitable for a motion capture production environment. Issues include production inefficiencies such as complex preparation of a specific geometric pattern on the cloth and capture quality limitations depending on lighting or other environmental issues.

Accordingly, what is needed is an improved apparatus and method for tracking and capturing deformable and foldable ³⁵ surfaces in an efficient production environment.

SUMMARY

A method according to one embodiment of the invention is 40 described comprising: applying a random pattern to specified regions of a performer's face and/or body and/or other deformable surface; tracking the movement of the random pattern during a motion capture session; and generating motion data representing the movement of the performer's 45 face using the tracked movement of the random pattern.

BRIEF DESCRIPTION OF THE DRAWINGS

A better understanding of the present invention can be 50 obtained from the following detailed description in conjunction with the drawings, in which:

FIG. 1 illustrates a prior art motion tracking system for tracking the motion of a performer using retroreflective markers and cameras.

FIG. 2a illustrates a prior art method of drawing a pattern with a makeup pencil for positioning the reflective markers for motion capture.

FIG. 2b illustrates a prior art method of applying the markers after drawing the pattern as in FIG. 2a.

FIG. 3 illustrates a prior art curve pattern, flattened into a 2D image, that replaces the markers of FIG. 1 for use with another motion tracking system.

FIG. 4 illustrates a face with the prior art curve pattern of FIG. 3 applied.

FIG. $\hat{\mathbf{5}}$ illustrates a random pattern applied to all parts of a performer's face, body, and props.

FIG. 6 illustrates one embodiment of the invention which employs the performer with the random pattern in FIG. 5 to track movement and/or facial expression with synchronized light panels and camera shutters.

FIG. 7 is a timing diagram illustrating the synchronization between the light panels and the shutters according to one embodiment of the invention.

FIGS. 8a and 8b are frames captured at the same time, with external visible light present, of an elevated view and a frontal view, respectively, of a performer with a random pattern of phosphorescent paint applied to the face.

FIGS. 9a and 9b are frames captured at the same time, without external visible light present, from the same perspectives as FIGS. 8a and 8b, respectively, of the performer with the random pattern of paint applied to the face.

FIG. 10 is a schematic representation of an exemplary LED array and the connectors for the synchronization signals.

FIG. 11 is a timing diagram illustrating the synchronization between the light panels and the camera shutters in an embodiment for capturing both lit frames and glow frames.

FIG. 12 is a timing diagram illustrating the synchronization between the light panels and the camera shutters in another embodiment for capturing both lit frames and glow frames.

FIG. 13 illustrates one embodiment of a system for capturing both lit frames and glow frames.

FIG. 14 illustrates a timing diagram associated with the system shown in FIG. 13.

FIG. 15 illustrates the method of correlating captured frames from two cameras of the motion capture system to create a 3D surface.

FIGS. **16***a* and **16***b* are the frame captures of FIGS. **9***a* and **9***b* mapped to a common coordinate system.

FIG. 17 is a frame with the frame captures of FIGS. 16a and 16b overlapping each other.

FIG. 18 illustrates an example of the correlation graph in order to determine the depth of a point in FIG. 17.

FIG. 19 is an example of a resulting 3D texture map from the correlation method of FIG. 15 and rendering.

FIGS. **20***a* and **20***b* are frames captured; at two separate points in time, from the same camera position, and with external visible light present; of a cloth with a random pattern of phosphorescent paint applied to both sides.

FIGS. **21***a* and **21***b* are frame captures, without external visible light present, corresponding to FIGS. **20***a* and **20***b*, respectively, of the cloth with the random pattern of paint applied to both sides.

FIG. 22 is a frame with the frame captures of FIGS. 21a and 21b overlapping each other.

FIG. 23 illustrates one embodiment of the camera positioning for the motion capture system of FIG. 6 or 13.

FIG. 24 illustrates the performer in FIG. 23 wearing a crown of markers.

FIG. 25 illustrates, from FIG. 23, the inner ring of cameras' fields of view of the performer.

FIGS. **26***a* and **26***b* are frames captured at successive moments in time, without external visible light present and each from the same perspective of a performer with the random pattern of paint applied to the face.

FIG. **27** is a frame with the frame captures of FIGS. **26***a* and **26***b* overlapping each other.

FIG. **28** illustrates the imaginary camera positioning 65 described in FIG. **15**.

FIG. 29 illustrates the imaginary camera at the same perspective as an existing camera.

4

5

 ${\it FIG}$, 30 illustrates correlation between frames captured by three cameras

DETAILED DESCRIPTION OF PREFERRED EMBODIMENTS

Described below is an improved apparatus and method for performing motion capture using a random pattern of paint applied to portions of a performer's face and/or body. In the following description, for the purposes of explanation, numerous specific details are set forth in order to provide a thorough understanding of the present invention. It will be apparent, however, to one skilled in the art that the present invention may be practiced without some of these specific details. In other instances, well-known structures and devices are shown in block diagram form to avoid obscuring the underlying principles of the invention.

The assignee of the present application previously developed a system for performing color-coded motion capture and a system for performing motion capture using a series of 20 reflective curves 300, illustrated generally in FIG. 3 and shown painted on the face of a performer 400 in FIG. 4. These systems are described in the co-pending applications entitled "Apparatus and Method for Capturing the Motion and/or Expression of a Performer," Ser. No. 10/942,609, and Ser. No. 25 10/942,413, Filed Sep. 15, 2004. These applications are assigned to the assignee of the present application and are incorporated herein by reference.

The assignee of the present application also previously developed a system for performing motion capture using 30 shutter synchronization and phosphorescent paint. This system is described in the co-pending application entitled "Apparatus and Method for Performing Motion Capture Using Shutter Synchronization," Ser. No. 11/077,628, Filed Mar. 10, 2005 (hereinafter "Shutter Synchronization" application). Briefly, in the Shutter Synchronization application, the efficiency of the motion capture system is improved by using phosphorescent paint and by precisely controlling synchronization between the motion capture cameras' shutters and the illumination of the painted curves. This application is 40 assigned to the assignee of the present application and is incorporated herein by reference.

Unlike any prior motion capture systems, in one embodiment of the present invention, illustrated generally in FIG. 5, a random pattern of phosphorescent paint is applied to the performer's face 502, body or clothing 504 and/or props 506 (e.g., a sword). The amount of paint applied to the performer may vary, i.e., with certain areas having relatively more or less paint in relation to other areas. No paint may be used on some areas whereas other areas may be saturated with paint. 50 In another embodiment, multiple colors of phosphorescent paint may be applied to create the random pattern on the performer. In addition, in one embodiment, the random pattern may be used concurrently with different structured patterns, such as the curve pattern described in co-pending application Ser. Nos. 10/942,609 and 10/942,413 or the marker system of FIG. 1.

In one embodiment, the phosphorescent paint applied to the performer's face is Fantasy F/XT Tube Makeup; Product #: FFX; Color Designation: GL; manufactured by Mehron 60 Inc. of 100 Red Schoolhouse Rd. Chestnut Ridge, N.Y. 10977. In another embodiment, paint viewable in visible light is used to apply the random pattern and visible light is used when capturing images. However, the underlying principles of the invention are not limited to any particular type of paint. 65 In another embodiment, if a liquid surface is to be captured, particles that float in the liquid can be distributed across the

6

surface of the liquid. Such particles could be phosphorescent particles, retroreflective spheres, or other materials which are visible with high contrast compared to the light emission of the liquid when it is captured.

As mentioned briefly above, in one embodiment, the efficiency of the motion capture system is improved by using phosphorescent paint and/or by precisely controlling synchronization between the cameras' shutters and the illumination of the random pattern. Specifically, FIG. 6 illustrates one embodiment in which the random pattern is painted on the performer's face 602 using phosphorescent paint and light panels 608-609 (e.g., LED arrays) are precisely synchronized with the opening and closing of the shutters of the motion capture cameras 604. The room in which the capture is performed is sealed from light so that it is completely, or nearly completely dark, when the light panels 608-609 are off. The synchronization between the light panels 608-609 and cameras 604 is controlled via synchronization signals 622 and **621**, respectively. As indicated in FIG. **6**, in one embodiment, the synchronization signals are provided from a peripheral component interface ("PCI") card 623 coupled to the PCI bus of a personal computer 620. An exemplary PCI card is a PCI-6601 manufactured by National Instruments of Austin, Tex. However, the underlying principles of the invention are not limited to any particular mechanism for generating the synchronization signals.

The synchronization between the light sources and the cameras employed in one embodiment of the invention is illustrated graphically in FIG. 7. In this embodiment, the two synchronization signals 621, 622 are the same. In one embodiment, the synchronization signals cycle between 0 to 5 Volts. In response to the synchronization signals **621**, **622**, the shutters of the cameras are periodically opened and closed and the light panels are periodically turned off and on, respectively. For example, on the rising edge 712 of the synchronization signals, the camera shutters are closed and the light panels are illuminated. The shutters remain closed and the light panels remain illuminated for a period of time 713. Then, on the falling edge of the synchronization signals 714, the shutters are opened and the light panels are turned off. The shutters and light panels are left in this state for another period of time 715. The process then repeats on the rising edge 717 of the synchronization signals.

As a result, during the first period of time 713, no image is captured by the cameras, and the random pattern of phosphorescent paint is illuminated with light from the light panels 608-609. During the second period of time 715, the light is turned off and the cameras capture an image of the glowing phosphorescent paint on the performer. Because the light panels are off during the second period of time 715, the contrast between the phosphorescent paint and the rest of the room (including the unpainted regions of the performer's body) is extremely high (i.e., the rest of the room is pitch black), thereby improving the ability of the system to differentiate the various patterns painted on the performer's face from anything else in the cameras' 604 fields of view. In addition, because the light panels are on half of the time, the performer will be able to see around the room during the performance. The frequency 716 of the synchronization signals may be set at such a high rate that the performer will not even notice that the light panels are being turned on and off. For example, at a flashing rate of 75 Hz or above, most humans are unable to perceive that a light is flashing and the light appears to be continuously illuminated. In psychophysical parlance, when a high frequency flashing light is perceived by humans to be continuously illuminated, it is said that "fusion" has been achieved. In one embodiment, the light

7

panels are cycled at 120 Hz; in another embodiment, the light panels are cycled at 240 Hz, both frequencies far above the fusion threshold of any human. However, the underlying principles of the invention are not limited to any particular frequency.

FIGS. 8a and 8b are exemplary pictures of the performer 602 during the first time period 713 (i.e., when the light panels are illuminated) from different reference angles and FIGS. 9a and 9b show the illuminated random pattern captured by the cameras 604 during the second time period 715 (i.e., when the light panels are turned off). During the first time period, the random pattern of phosphorescent paint (the paint as applied in FIGS. 8a and 8b is mostly transparent in visible light, but where the random pattern is particularly dense, it can be seen in visible light as small spots of white such as **802** in FIG. **8***a*) 15 is charged by the light from the light panels and, as illustrated in FIGS. 9a and 9b, when the light panels are turned off, the only light captured by the cameras is the light emanating from the charged phosphorescent paint (and the particularly dense spot 802 can be seen in FIG. 9a as spot 902). Thus, the 20 phosphorescent paint is constantly recharged by the strobing of the light panels, and therefore retains its glow throughout the motion capture session. In addition, because it retains its glow for a period of time, if a performer happens to move so that for a few frames some of the random pattern of phospho- 25 rescent paint is in shadow and not illuminated by the light panels, even though the phosphorescent paint is not getting fully charged for those frames, the paint will still retain its glow from previous frame times (i.e., when the paint was not

Note also that the random paint pattern varies both spatially (i.e. paint dot placements) and in amplitude (i.e., paint dot density, since denser (thicker) dots generally phosphoresce more light) resulting in a frame capture by cameras 604 during the glow interval 715 that is modulated randomly in 35 horizontal and vertical spatial dimensions as well as in brightness.

As mentioned above, in one embodiment, the light panels 608, 609 are LED arrays. A schematic of an exemplary LED array 1001 and associated connection circuitry is illustrated 40 in FIG. 10. The synchronization signals are applied to the LED array 1001 via connector J2-1 illustrated to the left in FIG. 10. In one embodiment, the connectors are RJ-45 connectors. The synchronization signal is initially inverted by inverter IC2B and the inverted signal is applied to the base of 45 transistor Q2, causing transistor Q2 to turn on and off in response to the inverted signal. This causes current to flow through resistor R3, thereby causing transistor Q1 to turn on and off. This, in turn, causes the LEDs within the LED array **501** to turn on and off. In one embodiment, the inverted signal 50 from IC2B is applied to three additional LED arrays as indicated in FIG. 10. A plurality of additional connectors J1-1, J1-2, J1-3, and J1-4 are provided for additional light panels (i.e., the light panels may be daisy-chained together via these connectors) using inverters IC2C, IC2D, IC2E and IC2F for 55 buffering. If daisy-chaining without buffering is desired (e.g. due to critical timing requirements that would be hampered by the IC2 propagation delays), then connector J2-2 can be used. The voltage regulator IC1 used for the LED array (shown at the top of FIG. 10) takes a 12V input and produces 60 a 5V regulated output used by IC2. In one embodiment, transistors Q1 is a MOSFET transistor. However, the underlying principles are not limited to any particular type of circuitry.

In one embodiment of the invention, the cameras are configured to capture pictures of the performer's face (e.g., FIGS. 8a and 8b) in addition to capturing the random pattern (e.g.,

8

FIGS. 9a and 9b). The pictures of the performer's face may then be used, for example, by animators as a texture map for correlating regions of the random pattern and rendering a more accurate representation of the performer. The phosphorescent paint as applied in FIGS. 8a and 8b is largely transparent in visible light, allowing for an almost unaltered capture of the underlying image of the performer's face. Prior art motion capture systems have obscured much of the object to be captured by utilizing opaque marking materials such as retroreflective markers or high-contrast paint, or by utilizing patterns projected onto the face. All of these prior art techniques have made it difficult to capture a largely unaltered visible light image of the object being captured. Further, prior art optical motion capture techniques have relied upon specific visible light lighting conditions. For example, retroreflective markers rely upon a light source around the camera lens, paint pattern capture techniques rely upon reasonably uniform lighting of the face (e.g. shadows and highlights are avoided) and projected pattern techniques rely upon projected light. In one embodiment of the invention, the motion is only captured during the glow interval 715.

During the visible light interval 713, virtually any lighting arrangement is possible so long as the phosphorescent paint is adequately charged (i.e., such that the pattern is within the light sensitivity capability of cameras 604) before it dims. This gives enormous creative control to a director who wishes to achieve dramatic effects with the lighting of the performers when their visible light images are captured. Such creative control of lighting is an integral part of the art of film making. Thus, not only does the present invention allow for largely unobstructed visible light capture of the performers, but it allows for creative control of the lighting during such visible light image capture.

The signal timing illustrated in FIG. 11 represents an embodiment in which an asymmetric duty cycle is used for the synchronization signal for the cameras (in contrast to the 50% duty cycle shown in FIG. 7). In this embodiment, synchronization signal 2 remains the same as in FIG. 7. The rising edge 1122 of synchronization signal 2 illuminates the light panels; the panels remain on for a first time period 1123, turn off in response to the falling edge 1124 of synchronization signal 2, and remain off for a second time period 1125.

By contrast, synchronization signal 1, which is used to control the shutters, has an asymmetric duty cycle. In response to the rising edge 1112 of synchronization signal 1, the shutters are closed. The shutters remain closed for a first period of time 1113 and are then opened in response to the falling edge 1114 of synchronization signal 1. The shutters remain open for a second period of time 1115 and are again closed in response to the rising edge of synchronization signal 1. The signals are synchronized so that the rising edge of synchronization signal 1 always coincides with both the rising and the falling edges of synchronization signal 2. As a result, the cameras capture one lit frame during time period 1115 (i.e., when the shutters are open the light panels are illuminated) and capture one "glow frame" during time period 1116 (i.e., when the shutters are open and the light panels are off).

In one embodiment, the data processing system 610 shown in FIG. 6 separates the lit frames from the glow frames to generate two separate streams of image data, one containing the images of the performer's face and the other containing phosphorescent random pattern data. The glow frames may then be used to generate the 3D point cloud that specifies surface 607 (shown enlarged in FIG. 19) of the performer's face and the lit frames may be used, for example, as a reference for animators. Such reference could be used, for

9

example, to better synchronize a texture map of the face, or if the resulting animated face is different from the performer's face (e.g. if it is a caricature), such reference could be used to help the animator know what expression the performer is intending during that frame of the performance. and/or to assist in generating the texture map derived from visible light capture 602 (shown enlarged in FIGS. 8a and 8b) of the performer's face. The two separate video sequences may be synchronized and viewed next to one another on a computer or other type of image editing device.

Given the significant difference in overall illumination between the lit frames and the glow frames, some cameras may become overdriven during the lit frames if their light sensitivity is turned up very high to accommodate glow frames. Accordingly, in one embodiment of the invention, the sensitivity of the cameras is cycled between lit frames and glow frames. That is, the sensitivity is set to a relatively high level for the glow frames and is then changed to a relatively low level for the lit frames.

Alternatively, if the sensitivity of the cameras 604 cannot be changed on a frame-by-frame basis, one embodiment of the invention changes the amount of time that the shutters are open between the lit frames and the glow frames. FIG. 12 illustrates the timing of one such embodiment in which syn- 25 chronization signal 1 is adjusted to ensure that the cameras will not be overdriven by the lit frames. Specifically, in this embodiment, during the period of time that synchronization signal 2 is causing the light panels to be illuminated, synchronization signal 1 causes the shutter to be closed for a relatively longer period of time than when synchronization signal 2 is not illuminating the light panels. In FIG. 12, for example, synchronization signal 1 is high during time period 1253, thereby closing the shutter, and is low during period 1255, thereby opening the shutter. By contrast, during the glow 35 frame, synchronization signal 1 is high for a relatively short period of time 1213 and is low for a relatively longer period of time 1215.

In one embodiment, illustrated in FIG. 13, both color and grayscale cameras are used and are synchronized using different synchronization signals. Specifically, in this embodiment, color cameras 1314-1315 are used to capture the lit frames and grayscale cameras 1304-1305 are used to capture the phosphorescent random pattern painted on the performer's face. One of the benefits of this configuration is that 45 grayscale cameras typically have a relatively higher resolution and higher light sensitivity than comparable sensor resolution color cameras, and can therefore capture the phosphorescent pattern more precisely. By contrast, color cameras are better suited to capturing the color and texture of the performer's face.

As illustrated in FIG. 14, in one embodiment, different synchronization signals, 1A and 1B are used to control the grayscale and color cameras, respectively. In FIG. 14, synchronization signals 1A and 1B are 180 degrees out of phase. 55 As a result, the falling edge 1414 of synchronization signal 1B occurs at the same time as the rising edge 1424 of synchronization signal 1A, thereby opening the shutters for the color cameras 1314, 1315 and closing the shutters for the grayscale cameras 1304, 1305. Similarly, the rising edge 60 1412 of synchronization signal 1B occurs at the same time as the falling edge 1422 of synchronization signal 1A, thereby closing the shutters for the color cameras 1314, 1315 and opening the shutters for the grayscale cameras 1304, 1305. The synchronization signal 2 for the light panels is not illustrated in FIG. 14 but, in one embodiment, is the same as it is in FIG. 7, turning the light panels on when the color camera

10

shutters are opened and turning the light panels off when the grayscale camera shutters are opened.

When the embodiments of the present invention described herein are implemented in the real world, the synchronization signals (e.g., 621 and 622 of FIG. 6) may require slight delays between respective edges to accommodate delays in the cameras and LED arrays. For example, on some video cameras, there is a slight delay after rising edge 712 of FIG. 7 before the camera shutter closes. This can be easily accommodated by delaying signal 622 relative to signal 621. Such delays are typically on the order of less than a millisecond. As such, when the system is started, the timing signals may initially need to be precisely calibrated by observing whether the video cameras 604 are capturing completely black frames and adjusting the timing signals 621 and 622 prior to the actual performance.

The random pattern of phosphorescent paint may be applied to the performer through a variety of techniques. In one embodiment, paint is applied to a sponge roller and the sponge roller is rolled across the specified portion of the performer. FIGS. 8a-9b illustrate a pattern applied by this technique. Other exemplary techniques comprise (i) spraying the paint with an airbrush, (ii) applying paint through a stencil, or (iii) flicking a wire brush containing paint such that the droplets of paint are splattered onto the surface to be captured. The desired result is any random pattern, ideally with a 1/n random distribution, but high-quality can be achieved with patterns which are far less than ideal. It should be noted that the above paint application techniques are not exhaustive but are merely several embodiments of the present invention.

During the application of paint, parts of the performer that are not intended to be touched by the paint may be covered. Parts of the performer that are typically screened from the paint application are the inside of the mouth and the eyeballs. These parts of the performer may have a random pattern applied to them through alternate techniques. In one exemplary technique, a random pattern of phosphorescent paint is applied to a contact lens, which is then placed over the performer's eyeball. In another exemplary technique, tooth caps embedded with a random pattern of phosphorescent pigments are placed over the teeth of the performer. In one embodiment, frames are captured during lit intervals 1115 and glow intervals 1116, and the performer's irises and/or pupils (which are smooth and geometric) are tracked during lit interval 1115 using visible light, while other parts of the performer's body are captured from phosphorescent paint patterns during glow intervals 1116.

In one embodiment of the present invention, live performers and/or sets are captured at the same time as motion capture performers, who are to be generated and rendered in the future, by the motion capture system illustrated in FIG. 13. The set is in a room illuminated by the synchronized LED lights 606, 609 of the motion capture system. The live-action performers and sets are captured by color cameras 1314-1315 during the frame intervals when the lights are on, and the motion-captured performers are captured by the grayscale cameras 1304-1305 during the frame intervals when the lights are off.

To compute the 3D surface 607 of FIGS. 6 and 13, images of the performer/paint are captured within the field of view of at least two cameras. Correlation of the motion capture data from the at least two cameras is performed in order to create a 3D surface of regions of the performer. The correlated regions of the captured data from all of the cameras are then correlated to create a final 3D surface 607.

In one embodiment of the present invention, a correlation may be performed by Data Processing system 610 (which

11

may incorporate one or more computing systems 605 per camera 604 and/or may incorporate one or more computing systems 606 to process the aggregated camera capture data) at a low resolution for each pair of frames from two cameras with overlapping fields of view to determine regions of the 5 pair of frames that highly correlate to each other. Then, another correlation of the regions determined to have high correlation at low resolution is performed at a higher resolution in order to construct a 3D surface for the two frames. Correlation may also be performed on at least two successive 10 time frame captures from the same view of reference in order to determine and track movement and/or expressions of the performer.

FIG. 15 is a flowchart illustrating one specific embodiment of a method for correlating two frame captures from two 15 different perspectives (e.g., the captures of FIGS. 9A and 9B). Before discussing the flowchart of FIG. 15, certain concepts must be introduced. Referring to FIG. 28, Camera 2801 captures frame PA in a stream of frames via sensor 2821. Camera 2802 captures frame PB via sensor 2822 at the same time 20 frame PA is captured. Through the correlation technique described in FIG. 15, the resulting correlated frame from frame PA and frame PB will be from the perspective of an imaginary or "virtual" camera, visualized as imaginary camera 2803 in FIG. 28.

The following variables will be used in discussing FIG. 15. r. Variable r is the sensor resolution divisor for downsampling. For example, if a 640×480 pixel resolution frame is downsampled to 160×120 pixels, then r equals 4 (640/160 and 480/120 equal 4).

 r_{max} : Variable r_{max} is the maximum sensor resolution divisor r can equal. Thus, the largest downsampling that can occur will use rmax.

SA: SA is the downsample of frame PA of factor of r. Downsampling can be performed using various filters such as 35 a bilinear filter, a bicubic filter, or other filters and/or techniques known in the art. Thus, in the example in the definition of r, SA is 160×120 pixels in size, where PA was downsampled from 640×480 with a value of r equals 4 to a size of $(640/4) \times (480/4)$.

SB: SB is the downsample of PB as through the same process described in the definition of SA. As will be seen in FIG. 15, correlations of frames PA and PB are first performed at lower resolutions (e.g., SA and SB) and then performed at gradually higher resolutions in order to prevent regions of 45 frames PA and PB from falsely having high correlations with one another. For example, in a particular frame, a spot on a performer's chin may be falsely be identified as having a high correlation with a spot on the ear.

 d_{min} : The distance d_{min} , illustrated in FIG. **28**, is the distance between the imaginary camera's sensor **2823** (the visualization of the frame buffer) and the plane perpendicular to line **2813** of a capture point of the object **2820** closest to the imaginary sensor **2823**. Thus, in the example of FIG. **28**, the closest point is the tip of the nose of performer **2820**. The 55 plane of the point is visualized as plane **2827**. It will be understood by one in the art through discussion of FIG. **15** that d_{min} can be set to a value less than the value described above. In other exemplary embodiments, d_{min} can be user defined or set to the beginning of the field of focal depth for 60 camera **2801** and/or **2802**.

 d_{max} : The distance d_{max} is the distance between the imaginary camera's sensor **2823** (the visualization of the frame buffer) and the plane perpendicular to line **2813** of a capture point of the object **2820** farthest away from the imaginary 65 sensor **2823**. Thus, in the example of FIG. **28**, the farthest point is the back of the head of performer **2820**. The plane of

the point is defined in the same way as for dmin. It will be understood by one in the art through discussion of FIG. 15 that d_{max} can be set to a value greater than the value described above, as shown plane 2828 in FIG. 28. In other exemplary embodiments, d_{max} can be user defined or set to the end of the field of focal depth for camera 2801 and/or 2802. In yet other exemplary embodiments d_{max} can be user defined or set to

further depth of the captured object in the fields of view of

cameras 2801 and 2802.

imaginary plane 2824.

12

d: The distance d is the distance between the imaginary camera's sensor **2823** and the imaginary plane of capture **2824**. During the process of FIG. **15**, frames PA and PB are correlated as if captured from the same point of reference. Hence, the frame stored in the frame buffer in correlating PA and PB is like a frame being captured via the imaginary sensor **2823** from the imaginary capture plane **2824**. Thus, during discussion of FIG. **15**, frames SA and SB will be reference converted using a perspective transform, or "warped", as if they were projected on imaginary plane **2824**. Distance d will change between d_{min} and d_{max} . Therefore, frames SA and SB will be warped multiple times as if projected on the moving

Δd: Δd is the increment that distance d changes between frames. Thus, it can be visualized that the imaginary plane
 25 2824 moves Δd distance from d_{min} to d_{max} where at each increment, the correlation of PA and PB is performed (as described in greater detail below). The user can choose a larger or smaller Δd, depending on the precision of reconstruction resolution in the z dimension that is desired.

VA: VA is the reference conversion of SA ("Virtual A"). In other words, VA is the resulting matrix (i.e., 2 dimensional frame buffer) of warping SA to the reference of the imaginary plane 2824. Matrix VA can be visualized as the frame SA (2825) captured via imaginary sensor 2823, but of course limited to what is in view of camera 2801. For example, if the underside of the nose of head 2820 is obstructed from camera 2801's view then VA will not contain image information from the underside of the nose.

VB: VB is the reference conversion of SB ("Virtual B"). In other words, VB is the resulting matrix (i.e., 2 dimensional frame buffer) of warping SB to the reference of the imaginary plane 2824. Matrix VB can be visualized as the frame SB (2826) captured via imaginary sensor 2823. VA and VB are two matrices of perspective converted matrices SA and SB that will be correlated against each other in the process illustrated in FIG. 15.

Z[m,n]: Matrix Z is originally of size m×n. The size of Z is originally equal to the size of capture frames PA and PB. Because of correlation at different resolutions, though, Z will be downsampled and upsampled. Thus, each element of Z is notated as z(j,k), where j is between 1 and m/r and k is between 1 and n/r. After the process illustrated in FIG. 15, when correlation is finished performing at the highest resolution (when r=1), $z(j,k)+d_{min}$ is the measure of depth of pixel j,k in the frame being correlated. Thus, pixel j,k of the resulting frame can be visualized as being $z(j,k)+d_{min}$ distance away from the imaginary camera 2803. Hence, once the correlation process of FIG. 15 is complete, the Z matrix can be used to render a 3D image of the object 2820.

 Z_{est} [m,n]: Matrix Z_{est} (an estimate of Z) is a matrix originally of size m×n. The existence and use of Z_{est} allows for the manipulation of z(j,k) values without changing the values stored in Z. Z_{est} will be the same size as Z through the downsampling and upsampling in the process described in FIG. 15.

roa: roa stands for Range of Acceptance and is the range of distances z(j,k) is allowed to deviate at a given resolution stage of the process illustrated in FIG. 15. For example, object

13

2820 is known to be within distance d_{min} and d_{max} of imaginary camera **2803**. Therefore, initial roa could be set to d_{max} - d_{min} , as in FIG. **15**, because no z(j,k) can be larger than this value. roa is refined each time a higher resolution pair of frames are beginning to be correlated, as will be seen in FIG. 5

C[(m/r),(n/r)]: Matrix C is a matrix of the correlation values for a pixel-wise, normalized cross-correlation between VA and VB at a specific d. The pixel-wise, normalized cross-correlation is well known in the art. An exemplary illustration and discussion of one pixel-wise, normalized cross-correlation is "Cross Correlation", written by Paul Bourke, copyright 1996 (http://astronomy.swin.edu.au/~pbourke/other/correlate/). In one embodiment of the present invention, the values are normalized to the range on –1 to 1. Since correlation will 15 be performed at varying resolutions, the size of the matrix will depend on the amount of downsampling of the original frames (e.g., PA and PB). For example, if PA and PB are downsampled to 80×60, C will be of size 80×60. Each element of C is notated as c(s,t) where s is between 1 and m/r and 20 t is between 1 and n/r.

 $C_{max}[(m/r),(n/r)]$: Matrix C_{max} is a matrix wherein $c_{max}(s,t)$ is the maximum value of c(s,t) when comparing all c(s,t) values for a specific s and t over all d's (e.g., d_{min} , d_{min} + Δd , d_{min} + $2\Delta d$, . . . , d_{max}). Hence, C_{max} contains the largest correlation value computed for each pair of pixels va(s,t) and vb(s,t) of matrices VA and VB. The d at which the largest correlation value is determined for pixel s,t will be stored in z(s,t) as the optimal d for the pair of pixels. When r is 1, the d's stored will create the wanted final Z matrix.

Beginning discussion of FIG. 15, step 1502 is entered wherein d, r, ROA, Z, and Z_{est} are initialized. Their initial values are set to the following:

$$r = r_{max}$$

$$d = d_{min}$$

$$roa = d_{max} - d_{min}$$

$$Z = \frac{d_{max} + d_{min}}{2}$$

$$Z_{est} = \frac{d_{max} + d_{min}}{2}$$

In one embodiment, r_{max} is defined by the user, but it may be determined in a variety of ways including, but not limited to, setting a static variable for all correlations or depending the variable on d_{min} and/or d_{max} . It will be understood by one in the art through matrix algebra that Z=a means; for all j,k; 50 z(j,k) equal a. Such notation will be used throughout the discussion of FIG. 15.

Step **1504** is then entered, where the frames PA and PB are downsampled to the size $m/r \times n/r$ and stored as SA and SB, respectively. Thus, for the first pass through step **1504**, the 55 size of SA and SB will be $m/r_{max} \times n/r_{max}$. As previously discussed, downsampling is well known in the art and may be performed by various filters and/or techniques including, but not limited to, bilinear filtering and bicubic filtering.

Proceeding to step **1506**, C_{max} is set to an initial value, 60 where:

$$C_{max}$$
=-1

All elements of matrix C_{max} may be set equal to any number or be user defined. The value of -1 is one value that 65 ensures that for every $c_{max}(s,t)$, at least one c(s,t) will be greater than $c_{max}(s,t)$ because the minimum of a correlation

14

value is typically 0. In the present embodiment illustrated in FIG. 15, C_{max} will be of the same size as SA and SB for every resolution because, as previously stated, the size of C_{max} is $m/r \times n/r$.

In step 1508, SA and SB are perspective transformed (warped) to the plane 2824 in FIG. 28 and stored in VA and VB, respectively, which can be visualized as frame captures 2825 and 2826 of the imaginary camera 2803 in FIG. 28 (2825 and 2826 are shown as being located behind 2823 for the sake of illustration, but spatially, they are coincident with 2823). It is understood and well known in the art that the two matrices VA and VB can be stored as one matrix utilizing a 3rd dimension of length 2 to store both frame buffers or stored in a variety of other ways.

Proceeding to step **1510**, a pixel-wise, normalized cross-correlation between VA and VB is performed and stored in C. It is understood in the art that substitutable functions may be performed, such as not normalizing the data before cross-correlation or correlating regions other than pixels.

In step 1512, every element in C_{max} is compared to its respective element in C, and the corresponding element of Z is compared to determine if it lies within the range of acceptance. Hence, for every (s,t) in C, C_{max} , and Z:

If
$$c_{max}(s,t) \le c(s,t)$$
 and $|z_{est}(s,t) - d| \le roa$,

then
$$c_{max}(s,t)=c(s,t)$$
 and $z(s,t)=d$

In one embodiment of the invention, the above conditional statement can be implemented in software through the use of multiple "for" loops for variables s and t. It will be appreciated by one in the art that the above conditional statement can be implemented in a variety of other ways. Once the final iteration of step **1512** has been performed for a specific resolution, matrix Z will be the best estimate of d values for each pixel corresponding to the depth of each pixel of the object captured away from d_{min}.

Once all conditional statements are performed in step **1512**, d is incremented in step **1514**. Thus,

$$d=d+\Delta d$$

40

As previously discussed, Δd is a user defined value to increment d. Δd can be visualized as the distance for moving imaginary plane 2824 a Δd distance past the imaginary plane's 2824 previous position.

Proceeding to decision block 1516, the procedure determines if the final cross-correlation 1510 of VA and VB and comparison step 1512 at a specific distance d has been performed. The process can be visually perceived in FIG. 28 as determining whether the imaginary plane 2824 has been moved far enough to be positioned behind imaginary plane 2828. Mathematically, the process block determines if:

$$d \le d_{max}$$

If true, then the procedure has not finished all iterations of cross-correlating VA and VB at a specific resolution. Hence, the procedure loops back to step 1508. If the above statement is false, then the procedure has finished cross-correlating VA and VB at a specific resolution. Therefore, the procedure flows to step 1518.

In step **1518**, the sensor resolution divisor r is decreased. In the illustrated embodiment, r is decreased by:

$$r = \frac{r}{2}$$

15

Decreasing r leads to cross-correlation being performed at a higher resolution because SA and SB are the downsampling of PA and PB, respectively, by the magnitude of r. Thus, for example, if r is 8, then r/2 is 4. Hence, the size of SA and SB increases from, for example, 80×60 to 160×120 where PA and 5 PB are of size 480×360 . Other exemplary embodiments of decreasing r exist such as, but not limited to, a user defined array of specific r values or dividing by a different value other than 2. Dividing by 2 means that the frame captures PA and PB will be downsampled at a magnitude of factors of two 10 (e.g., $2\times$, $4\times$, $8\times$, . . .).

Once r has been decreased, decision block **1520** is reached. Decision block **1520** determines whether r has been decreased to less than 1. As previously discussed, when r equals 1, no downsampling of PA and PB occurs. Therefore, 15 in the current embodiment, when r is less than 1 (e.g., r=0.5), the previous cross-correlations were performed at the highest resolution (e.g., 640×480 if PA and PB are of size 640×480) and the attained Z matrix is the desired matrix to help render a 3D surface of the object. If r is greater than or equal to 1, then 20 cross-correlation has not yet been performed at the highest resolution. Thus, the decision block determines if:

r≥1

If false, the procedure illustrated in FIG. **15** has completed and the flowchart is exited. If the above statement is true, then the procedure flows to step **1522**. If, as in one previously discussed embodiment r is decreased by an array of specific values in step **1518**, then one skilled in the art will notice that the logic of decision block **1518** will change to logic needed to determine if the last value in the array of specific values iterated through in block **1518** has been reached during the flow of the flowchart a number of times equal to the number of elements in the array. One skilled in the art will know how to change the logic of decision block **1520** depending on the ³⁵ logic of step **1518**.

In step 1522, some of the variables are adjusted before cross-correlating at a higher resolution. The following variables are set as:

$$Z = \text{upsampled}(Z_{est})$$

 $Z_{est} = Z$

$$\Delta d = \frac{\Delta a}{2}$$

 $d = d_{\min}$

 Z_{est} is upsampled and stored in Z. In order to determine the magnitude of upsampling, one skilled in the art will notice that the value of dividing r in step **1518** is the magnitude of upsampling. In the present embodiment, the magnitude of upsampling is 2. For example, Z_{est} (if currently of size 160×120) is upsampled to size 320×240 and stored in Z. The magnitude of upsampling can be determined by dividing the original value of r in step **1518** by the decreased value of r in step **1518**. If an array of defined r values is used for step **1518**, then the magnitude of upsampling can be determined from the array. As previously stated, upsampling is well known in the art and can be performed with a variety of filters and/or techniques including, but not limited to, bilinear filtering and bicubic filtering. Once Z has been stored, Z_{est} is set equal to Z (the result of upsampling Z_{est} for determining Z).

In addition to setting the values of Z and Z_{est} . Δd is 65 decreased. In the current embodiment, Δd is divided by 2. Δd is decreased because when cross-correlating at higher reso-

16

lutions, the increment of increasing d should be smaller in order to determine better z values for each pixel s,t. Visually, at higher resolution, the user will want the imaginary screen **2824** in FIG. **28** to move at smaller intervals between d_{min} and d_{max} . Δd may be decreased in any manner known in the art, such as, but not limited to, dividing by a different value or using Δd values defined by a user in an array the size of 1 greater than the number of iterations of step **1522** during flow of the flowchart.

Furthermore, d is reset to equal d_{min} . Visually, this can be illustrated, in FIG. 28, as resetting the imaginary plane 2824 to the position of imaginary plane 2827, which is a d_{min} distance from the imaginary camera 2803 along path 2813.

Proceeding to step 1524, roa is decreased. roa is decreased because prior cross-correlation at a lower resolution helps to determine a smaller range of acceptance for z values after cross-correlating at a higher resolution. In the current embodiment, roa is decreased by the following equation.

 $roa = \Delta d \times 10$

For the first time performing step **1524**, $\Delta d \times 10$ should be less than the difference between d_{max} and d_{min} , which is the value roa was originally set to equal. 10 was found to be a good multiple of Δd for the current embodiment, but roa can be decreased in a variety of ways including, but not limited to, multiplying Δd by a different value than 10 and dividing roa by a value.

After decreasing roa, the procedure loops back to step 1504 to perform cross-correlation at a higher resolution, wherein the flowchart is followed until exiting the procedure at decision block 1520.

FIG. 15 illustrates only one embodiment of the present invention. It will be known to someone skilled in the art that not all of the steps and processes illustrated in FIG. 15 must be followed. Instead, FIG. 15 should only be used as a guideline for implementing one embodiment of the present invention. Alternate embodiments may comprise, but are not limited to, using a larger Δd value for incrementing d and then performing a curve regression on the correlation values for each pixel s,t in order to determine a maxima of the curve and thus extrapolate a z value corresponding to the maxima. The above alternate embodiment may allow for faster processing as less pixel-wise, normalized cross-correlations need to be performed at each resolution.

Another embodiment of the present invention is illustrated in FIG. 29. FIG. 29 illustrates the imaginary camera as envisioned in FIG. 28 as being at the position of one of the cameras 2901 or 2902. In FIG. 29, the imaginary camera can be envisioned as camera 2901. Thus, the frame buffer 2823 visualized in FIG. 28 can be visualized as the sensor 2921 of the camera 2901. Hence, in this alternate embodiment, the flowchart of FIG. 15 is changed such that VA=SA in step 1508. Since the frame buffer is from the perspective of camera 2901, the frame capture of 2901 does not need to be perspective converted (warped). All other aspects of the previously discussed embodiment of the invention are included in this alternate embodiment.

In a further embodiment of the present invention, more than two cameras are used for cross-correlation. FIG. 30 illustrates frame captures from three cameras being cross-correlated. The imaginary camera 2803 as visualized in FIG. 28 is visualized as one of the cameras 3001, 3002, or 3003. In the specific alternate embodiment, the imaginary camera is visualized as the camera 3003, where frame buffers 3025 and 3026 correspond to the warped frame captures of cameras 3001 and 3002, respectively (for the sake of illustration, frame buffers 3025 and 3026 are shown as being located

17

behind sensor 3023, but they will be warped to a position that coincides spatially with sensor 3023). Since multiple pairs of frames are cross-correlated, the flowchart of FIG. 15 is amended for the alternate embodiment such that, in step 1510, matrix C is the average of the two correlations per- 5 formed between frame buffers 3023 and 3025, and between 3023 and 3026. Thus, matrix C can be mathematically annotated as:

$$C = \frac{C_B + C_C}{2}$$

where CB is the pixel-wise, normalized cross-correlation 15 correlation between a warped frame 3025 of camera 3001 and a frame 3023 of camera 3003 and CC is the pixel-wise, normalized cross-correlation between a warped frame 3026 of camera 3002 and a frame 3023 of camera 3003. The alternate embodiment may also be expanded to include any num- 20 ber of cameras over 3, each with their capture frame warped to the position of frame 3023 of camera 3002 and then pixelwise, normalized cross-correlated with frame 3023, with all of the correlated results averaged to produce a value of C per pixel. Furthermore, the cross-correlations may be combined 25 by means other than a simple average. In addition, the alternate embodiment may set the frame buffer perspective, as visualized as sensor 2823 in imaginary camera 2803 of FIG. 28, outside of any of the existing cameras 3001-3003. For example, an imaginary camera could be visualized as existing 30 between cameras 3001 and 3002 such that the frame captures of all cameras would need to be warped to the perspective of the imaginary camera before cross-correlation. Other embodiments exist of the present invention, and the scope of the present invention should not be limited to the above 35 be captured by only one camera. When the system of one examples and illustrations.

FIGS. 16a and 16b and 17 help illustrated visually what the correlation algorithm is doing. FIGS. 16a and 16b illustrate frame captures 1600 and 1610. The frame captures 1600 and **1610** are perspective converted (warped) as an example of 40 step 1508 in FIG. 15 at full resolution (i.e. when r=1). A user would be able to see with the naked eye that regions 1602, 1604, and 1606 correspond to regions 1612, 1614, and 1616, respectively. Colors red and green have been used for illustration purposes only, as the capture can be performed in any 45 format such as, for example, grayscale.

FIG. 17 is an example of the frames 1600 and 1610 being overlapped as frame 1700, as may be an example of storing VA and VB as one matrix of arrays in step 1508 of FIG. 15. A user would be able to see with the naked eye that the depth d 50 is currently set such that region 1704 has a higher correlation than regions 1702 and 1706 (region 1604 and 1614 are closer in to each other than are the other region pairs). The color yellow (red+green) illustrates high correlation between overlapping pixels at a depth d while high concentrations of red 55 and/or green color illustrates lower correlation between overlapping pixels at a depth d. Color yellow has been used for illustration purposes only.

FIG. 18 is an example of the graph for determining z(s,t)(1803) for a specific pixel s,t at a specific resolution (identi- 60 fied by window size 1801). The range of acceptance (roa) 1804 (which had been determined by prior correlations at lower resolution) limits the values that z can equal so as to remove false peaks 1806 of correlation values from consideration in order to determine the correct correlation value 65 corresponding to a correct d value for pixel s,t. In the example, mark 1807 identifies the z 1803 that corresponds to the true

18

peak 1805. False peaks can result from any number of reasons, including noise in the captured signal, random regions with similar patterns, or because the area being captured is quite oblique to the capturing camera and produces a distorted image. Thus, the successive reduction of resolution, illustrated by the process shown in FIG. 15 is very effective eliminating false peaks from consideration when determining the correct z value in the capture reconstruction. It will be recognized by those skilled in the art that FIG. 18 is only an 10 illustration of the pixel-wise, normalized cross-correlation and comparison process of steps 1510 and 1512 of FIG. 15 and should not be considered as a limitation of the determination of values for matrix Z.

The Z matrix output from FIG. 15 can then be rendered into a 3D surface. FIG. 19 is a 2D representation of the 3D surface 1900 created by correlating the frames represented in FIGS. 9a and 9b. It should be noted that the "splotchy" or "leathery" appearance of the 3D surface 1900 is related to the low resolution of the cameras used to capture the frames of the performer (e.g., 0.3 Megapixels).

The processes just described for determining the surface of a captured object can be used for a single frame, or it can be re-applied successively for multiple frames of an object in motion. In this case, if the reconstructed images such as that of FIG. 19 are played back in succession, a 3D animation of the captured surface will be seen. In an alternative embodiment, the same process is reapplied to successive frames of an object that is not moving. In that case, the resulting reconstructed z values can be averaged among the frames so as to reduce noise. Alternatively, other weightings than an averaging can be used, including for example, using the z value at each pixel which was derived with the highest correlation value amongst all the reconstructed frames.

During motion capture, some regions of a performer may embodiment correlates the region with other regions from cameras with overlapping fields of view, the correlation determines that the region is distinct (i.e. it does not have a high correlation with any other captured region) and the system can then establish that the region is visible but its position can not be reconstructed into a 3D surface. FIG. 19 illustrates at 1902 an artifact created on the 3D surface 1900 by having only one camera capture a region (i.e. this object was captured by 2 cameras, one above the head and one below the head; the top of the nose obstructed the camera above the head from having visibility of the nostrils, so only the camera below the head had visibility of the nostrils). In addition, artifacts and errors may occur where the region is at an angle too oblique in relation to the cameras' optical axis (as shown by the artifact 1904, a region oblique to both cameras) or where the pattern is out of view of all cameras in the motion capture system (as shown by the artifact 1906).

For regions that may be out of view of any camera of the motion capture system, the random patterns on all surfaces desired to be captured may be captured and stored by the motion capture system before initiating a motion capture sequence. To capture and store the random pattern, the performer (with any other objects desired to be captured) stands in such a way that each region to be captured is visible to at least one camera. The captured patterns are stored in a database in memory (e.g., RAM or hard disk). If the region is only seen by one camera, then the pattern stored is the pattern captured by that one camera. If it is seen by multiple cameras, then the views of the region by each of the multiple cameras is stored as a vector of patterns for that region. In some cases, it is not possible to find one position where the random pattern areas on the performer and all other objects to be captured can

19

be seen by at least one camera. In this case, the performer and/or objects are repositioned and captured through successive frames until all random pattern areas have been captured by at least one camera in at least one frame. Each individual frame has its captured patterns correlated and stored as 5 described previously in this paragraph, and then correlations are performed among all of the stored patterns from the various frames. If a region of one frame is found to correlate with the region of another, then each frame's images of the region (or one or both frame's multiple images, if multiple cameras 10 in one or both frames correlate to the region) is stored as a vector of patterns for that region. If yet additional frames capture regions which correlate to the said region, then yet more images of that region are added to the vector of images. In the end, what is stored in the database is a single vector for 15 each random pattern area of every surface desired to be captured by the system.

Note that the size of the areas analyzed for correlation in the previous paragraph is dependent on the desired resolution of the capture and the achievable resolution of the cameras, 20 given their distance from the objects to be captured. By moving the cameras closer to the objects to be captured and by using higher pixel resolution cameras, smaller areas can be captured and correlated. But, higher resolutions will result in higher computational overhead, so if an application does not 25 require the full achievable resolution of the system, then lower resolution can be used by simply correlating the captured regions at a lower resolution. Or, to put it another way, random patterns can be correlated whether they are correlated at the full resolution of the cameras or at a lower resolution. In 30 one embodiment of the invention, the desired capture resolution can be specified by the user.

Once the region database has been created as described previously, the motion capture session can begin and the motion of a performance can be captured. After a sequence of 35 frames of the motion of a performance is captured, for each given frame, all of the regions stored in the region database are correlated against the captured regions. If a given stored region does not correlate with any of the captured regions (even regions captured by only a single camera), then the 40 system will report that the given region is out of view of all cameras for that frame.

A 3D modeling/rendering and animation package (such as Maya from Alias Systems Corp. of Toronto, Ontario Canada) can link a texture map or other surface treatments to the 45 output of the motion capture system for realistic animation. For example, if the character to be rendered from the motion capture data has a distinctive mole on her cheek, the texture map created for that character would have a mole at a particular position on the cheek. When the first frame is taken from 50 the motion capture system, the texture map is then fitted to the surface captured. The mole would then end up at some position on the cheek for that frame captured from the performer, and the motion capture system would identify that position by its correlation to its region database.

The motion capture system of the present invention can correlate successive time interval frame captures to determine movement of the performer. In one embodiment of the present invention, the distance and orientation between correlated regions of the random pattern captured in successive 60 time frames are measured to determine the amount and direction of movement. To illustrate, FIGS. **26***a* and **26***b* are frames **2600**, **2610** captured by a camera separated by ½78th of a second in time. The data of the frames **2600**, **2610** are colored red and green, respectively, for illustrative purposes only. The 65 frame captures can be performed in any color, grayscale or any capture technique known in the art.

20

In FIG. 27, the frame 2700 is the overlapping of frames 2600 and 2610 from FIGS. 26a and 26b, respectively. Uniformly yellow areas of frame 2700 are regions of the random pattern that appear in the same position in both frames 2600 and 2610 (i.e. they do not move in the ½78th-second time interval). Where areas of red and/or green in frame 2700 exist, the random pattern moved in the time interval between the capture of the frames 2600 and 2610. For example, region 2702 is uniformly yellow and thus represents little or no movement between corresponding spots 2602 and 2612. In contrast, region 2704 comprises a pair of red and green spots corresponding to a green spot 2604 and a red spot 2614, thus representing more movement during the 1/78th-second time interval from frame 2600 to frame 2610 than that of region 2702. The colors of red, green, and yellow for frame 2700 are for illustrative purposes only.

Thus utilizing the recognition of movement in successive frame captures, in one embodiment of the invention, the 3D modeling/rendering/and animation package can link the texture map or other surface treatments to the recognized directions and distances of movement for regions of the random pattern during successive frame captures of the motion capture system to achieve realistic animation.

Utilizing the previous example of the mole within the 3D texture rendered by the package, in a successive new frame where the area of the cheek with the mole would move, that region of the 3D texture with the mole would also move. For example, suppose the mole was located at spot 2604 during frame time 2600. The motion capture system would correlate the region with the region database and would identify that the region is now at a new position 2614 on the new surface that it outputs for the new frame 2610. This information would be used by the 3D modeling/rendering and animation package, and the package would move the mole on the texture map for the cheek to the new position 2614. In this manner, the texture map would stay locked to the changing surface features during the performance.

The precise frame-to-frame surface region tracking described in the previous paragraph would be very difficult to achieve with an arbitrary position on the performer (e.g. the performer's face) using prior art motion capture systems. With a retroreflective marker-based system (such as that used on the face shown in FIGS. 2a and 2b), the only positions on the performers that can be tracked precisely are those which happen to be positions containing a marker. With a line-based system (such as that shown in FIG. 4), the only positions that can be tracked precisely are those at the intersections of the lines, and only approximately at positions on the lines between the intersections. And with a system using patterns projected on the face, no positions can be tracked precisely, unless some markers are applied to the face, and then the tracking is no better than a marker- or line-based system. Thus, this invention is a dramatic improvement over prior-art systems in tracking positions on deformable surfaces (such as 55 a face) while capturing the surfaces at high resolution.

Although the present invention may be utilized to capture any surface or object with an applied random pattern, one application for which the invention is particularly useful is capturing the motion of moving fabric. In one embodiment, a random pattern is applied to a side of the cloth or article of clothing. In another embodiment of the present invention, a random pattern is applied to both sides of a cloth or article of clothing. In yet another embodiment, each side of the cloth is coated with a random pattern of a different color paint (in the case of phosphorescent paint, a paint that phosphoresces in a different color) in relation to the paint applied to the other side in order to better differentiate the two sides.

FIGS. 20a and 20b illustrate captured frames with external visible light of a cloth with an applied random pattern of phosphorescent paint (the phosphorescent paint as applied is largely transparent in visible light, but where it is especially dense, it can be seen in as a smattering of yellow on the cloth's 5 blue and lavender paisley print pattern). FIGS. 21a and 21b illustrate the captured frames, without external visible light, corresponding to the captured frames of FIGS. 20a and 20b, respectively. FIGS. 21a and 21b are colored red and green, respectively, for descriptive purposes only in the forthcoming description of FIG. 22. For the present invention, the frames may be captured in any color or in grayscale.

21

The motion capture system of the present invention handles cloth in the same way it handles a performer. In one embodiment, prior to a motion capture session, the cloth with 15 the random pattern applied is unfolded and held in such a way that each region on both sides of the cloth can be captured by at least one camera. A region database is then created for all regions on both sides of the cloth.

During the capture session, for each frame, the regions that 20 are visible to at least 2 cameras are correlated and their surface positions are output from the motion capture system along with the regions in the region database that correlate to the regions on the surface, as illustrated in FIG. 15. Therefore, the 3D modeling/rendering and animation package is able to 25 keep a texture map locked to the surface that is output by the motion capture system.

In addition, correlation can be performed on subsequent time frame captures from the same camera in order to track points on the cloth as they move. For example, FIG. 22 30 illustrates the overlapping of FIGS. 21a and 21b, which were captured at different times. Regions 2102 and 2106 of FIG. 21a are correlated to regions 2112 and 2116 of FIG. 21b, respectively, as shown by regions 2202 and 2206/2216, respectively, in FIG. 22. Region 2104 has no mated region in 35 FIG. 21b because the region is hidden from the camera's view by the fold in the cloth, as shown by corresponding region 2204 in FIG. 22 in red, for which there is no mated green region. For illustrative purposes, the uniformly yellow regions of the frame in FIG. 22 correspond to non-moving 40 regions of the frames in FIGS. 21a and 21b and the regions of FIG. 22 that are either a medley of red/green/yellow or are of a solid red or green color indicate areas that have moved from the frame captured in FIG. 21a and the frame captured in FIG. **21***b*. Thus, movement can be noticed because of the shifting 45 of region 2106/2206 to region 2116/2216 and the disappearance of region 2104 of the cloth between FIGS. 21a and 21b, leaving only a solid red region 2204.

The cloth capture techniques described herein can also facilitate a simulated cloth animation, which may be created 50 by cloth animation packages such as those available within Maya from Alias Systems Corp. of Toronto, Ontario Canada. A performer may wear a garment similar to the one being simulated by the cloth animation package. The performer may then perform movements desired by the animation director while being captured by the motion capture system. The motion capture system of the present invention then outputs the cloth surface each frame, as previously described, along with a mapping of the position of the regions on the cloth surface (as correlated with the previously captured region 60 database of the entire surface of the cloth). The data is then used by the cloth simulation package to establish constraints on the movement of the cloth.

For example, suppose an animation director has a character in an animation that is wearing a cloak. The animation director wishes the cloak to billow in the wind with a certain dramatic effect. Prior art cloth simulation packages would require the animation director to try establish physical conditions in the simulation (e.g. the speed, direction and turbulence of the wind, the weight and flexibility of the cloth, the mechanical constraints of where the cloth is attached to the performer's body, the shape and flexibility of any objects the cloth comes into contact with, seams or other stiff elements in the cape, etc.). And, even with very fast computers, a high-resolution cloth simulation could easily take hours, or even days, to complete, before the animation director will know whether the resulting billowing cloak look corresponds to the dramatic effect he or she is trying to achieve. If it doesn't, then it will be a matter of adjusting the physical conditions of the

simulation again, and then waiting for the simulation to com-

plete again. This adds enormous cost to animations involving

cloth animation and limits the degree of dramatic expression.

22

Given the same example as the previous paragraph, but using one embodiment of the present invention (i.e. applying a random pattern of paint to the cloth and capturing it as described previously), if the animation director desires a character to have a cloak to billow in the wind with a certain dramatic effect, then the animation director just attaches a cloak of the desired weight and flexibility on a performer in the environment of the scene, and then adjusts a fan blowing on the performer until the billowing of the cloak achieves the desired dramatic effect. Then, this billowing cloak is captured using the techniques previous described. Now, when the cloth for the cloak is simulated by the cloth simulation package, the cloth simulation package can be configured with only very approximate physical conditions, but to only allow the cloak to move within some range of motion (e.g. plus or minus 5 pixels in x, y, or z) relative to the motion of the captured cloak. Then, when the cloth animation package simulates the cloak, its motion will very closely follow the motion of the captured cloak due to the constrained motion, and the animation director will achieve the desired dramatic effect. Thus, compared to prior art cloth simulation techniques, the method of the present invention dramatically reduces the time and effort needed to achieve a desired dramatic effect with simulated cloth, which allows the director far more creative control. In one embodiment of the present invention (as illustrated in the preceding example), the captured cloth surface may be used to establish a general set of boundaries for the cloth simulation, so that each region simulated cloth may not veer further than a certain distance from each region of the captured cloth. In another embodiment, the captured cloth surface may be used for rigid parts of a garment (e.g. the rigid parts like the collar or seams), and the simulated cloth may be used for the non-rigid parts of the garment (e.g., the sleeves). Likewise, another embodiment is that the captured cloth surface may be used for the non-rigid parts of the garment (e.g. the sleeves), and the simulated cloth may be used for the rigid parts of a garment (e.g., collar, seams).

The present invention is not constrained to capturing or using only specific portions of a captured cloth surface. The captured cloth surface can be used to fully specify the cloth surface for an animation, or it can be used partially to specify the cloth surface, or it can be used as a constraint for a simulation of a cloth surface. The above embodiments are only for illustrative purposes.

Camera Positioning for a Motion Capture System

Because motion capture with random patterns allows for higher resolution capture, the system may employ camera positioning which is different from existing camera configurations in current motion capture systems. The unique configuration yields motion capture at higher resolution than 23

motion capture produced by previously existing camera configurations with the same type of cameras. Another of the many advantages of the unique camera configuration is that large-scale camera shots can capture relatively low-resolution background objects and skeletal motion of performers 5 and still motion capture at high resolution critical motions of performers such as faces and hands.

FIG. 23 illustrates one embodiment of the camera positioning for motion capturing the performer 2302. In the current embodiment, the performer is wearing a crown 2400 with 10 markers attached (e.g., 2406, 2408). FIG. 24 shows the markers of the crown 2400 worn by the performer 2302 at varying heights from one another. For example, marker 2406 is lower than marker 2408, which is lower than marker 2410. With varying heights placed on the markers, the motion capture 15 system can determine in which direction the performer 2302 is orientated. Orientation can also be determined by other embodiments of the present invention, such as markers placed on the body, or identifiable random patterns applied to certain regions of the performer 2302.

In FIG. 24, a random pattern is applied to the entire performer 2302, but alternate embodiments have the random pattern applied to a portion of the performer 2302, such as the face. In an additional embodiment, filming without motion capture using the unique camera configuration allows higher 25 resolution capture of portions of a larger shot (e.g., close up capture of two performers having a dialogue in a larger scene).

In FIG. 23, a ring of cameras (e.g., cameras 2310 and 2312) close to the performer 2302 is used. In one embodiment of the present invention, the cameras capture the areas of the performer 2302 for which a high resolution is desired. For example, a random pattern applied to the face of a performer 2302 may be captured at a high resolution because of the close proximity of the cameras 2310-2312. Any number of cameras can circle the performer 2302, and the cameras can be positioned any reasonable distance away from the performer 2302.

FIG. 25 illustrates the performer 2302 encircled by the ring of cameras 2310-2312 from FIG. 23. In one embodiment of 40 the present invention, persons control the cameras circling the performer 2302. For example, person 2504 controls camera 2310. Human control of a camera allows the person to focus on important and/or critical areas of the performer 2302 for high resolution motion capture. In alternate embodiments, the 45 cameras may be machine-controlled and/or stabilized.

Referring back to FIG. 23, a second ring of cameras (e.g., cameras 2318-2322) encircles the first ring of cameras and the performer 2302. Any number of cameras may form the second ring of cameras 2318-2322. In one embodiment, the 50 outer ring of cameras capture wide shots including a lower resolution capture of the performer 2302 than the cameras 2310-2312, which are in closer proximity to the performer 2302.

In order to create a wide shot with a high resolution capture of the performer 2302, the motion captures of the inner ring of cameras 2310-2312 must be integrated into the wide captures of the outer ring of cameras 2318-2322. In order to integrate the captures, the Data Processing Unit 610 of the motion capture system must know the camera position and orientation for each of the cameras comprising the inner ring of cameras 2310-2312. Determining the positioning of the cameras comprising the inner ring may be of more importance and difficulty with the use of persons 2504 to control the cameras 2310-2312 because of random human movement.

In one embodiment, markers (e.g., 2314 and 2316) are attached to the cameras 2310-2312. The markers 2314-2316

24

are captured by the outer ring of cameras 2318-2322. The position and orientation of the markers 2314-2316 identified in the frame captures of the outer ring of cameras 2318-2322 allow the data processing unit to determine the position and orientation of each camera of the inner ring of cameras 2310-2312. Therefore, the Data Processing Unit 610 can correlate the desired frame captures from an inner ring camera with the frame captures of an outer ring camera so as to match the orientation and positioning of the inner ring camera's frame captures with the outer ring camera's frame captures. In this way, a combined capture of both high-resolution and low-resolution captured data can be achieved in the same motion capture session.

FIG. 25 illustrates the cameras' field of view (e.g., camera 2310 has field of view 2510 and camera 2312 has field of view 2512). When two cameras have overlapping fields of view, 3D rendering can be performed on the streams of frame captures (as previously discussed).

In order to correlate images as described in the process illustrated in FIG. 15, the data processing unit must know the orientations and positions of the two cameras. For example, the Data Processing Unit 610 may have to correct the tilt of a frame because of the person controlling the camera holding the camera at a tilted angle in comparison to the other camera.

25 In one embodiment, the position and orientation of the markers attached to the cameras are used by the Data Processing Unit 610 to calculate corrections to offset the orientation differences between the two cameras. The Data Processing Unit 610 can also correct the difference in distance the two cameras are positioned away from the performer 2302.

Once corrections are performed by the Data Processing Unit 610, the Data Processing Unit 610 may correlate the streams of capture data from the two cameras in order to render a 3D surface. Correlations can also be performed on the streams of frame captures from two outer ring cameras 2318-2322, and then all correlations can be combined to render a volume from the captures. Correlations can then be performed on the sequence of volumes to render the motion of a volume.

In an alternative embodiment, the outer ring of cameras 2318-2322 are prior art retroreflective marker-based motion capture cameras and the inner ring of cameras 2310-2312 are random-pattern motion capture cameras of the present invention. In this embodiment, when phosphorescent random pattern paint is used, the LED rings around the marker-based cameras 2318-2322 (shown as LED rings 130-132 in FIG. 1) are switched on and off synchronously with the light panels (e.g. 608 and 609 of FIG. 6) so that the outer ring marker capture occurs when the LED rings 130-132 are on (e.g. during interval 713 of FIG. 7) and the inner ring random pattern capture occurs when the LED rings 130-132 are off (e.g. during interval 715 of FIG. 7).

In another embodiment, the outer ring of cameras 2318-2322 are prior art marker-based motion capture cameras and the inner ring of cameras 2310-2312 are random-pattern motion capture cameras of the present invention, but instead of using retroreflective balls for markers, phosphorescent balls are used for markers. In this embodiment, when phosphorescent random paint is used, the inner and outer cameras capture their frames at the same time (e.g. interval 715 of FIG. 7).

In another embodiment, utilizing either of the capture synchronization methods described in the preceding two paragraphs, the outer ring of cameras 2318-2322 capture lower-resolution marker-based motion (e.g. skeletal motion) and the inner ring of cameras 2310-2312 capture high-resolution surface motion (e.g. faces, hands and cloth). In one embodiment

45

25

the outer ring of cameras 2318-2322 are in fixed positions (e.g. on tripods) while the inner ring of cameras 2310-2312 are handheld and move to follow the performer. Markers 2314-2316 on the inner ring cameras are tracked by the outer ring cameras 2318-2322 to establish their position in the capture volume (x, y, z, yaw, pitch roll). This positioning information is then used by the software correlating the data from the inner ring cameras 2310-2312 using the methods described above (e.g. FIG. 15). Also, this positioning information is used to establish a common coordinate space for the marker-based motion data captured by the outer ring cameras 2318-2322 and the random-pattern based motion data captured by the inner ring cameras 2310-2312 so that the captured objects can be integrated into the same 3D scene with appropriate relative placement.

In another embodiment, using either outer- and inner-ring synchronization method, an outer ring of marker-based cameras 2318-2322 tracks the crown of markers 2400 and determines the position of the markers in the capture volume, and an inner ring of random pattern-based cameras 2310-2310 20 determines their position relative to one another and to the crown 2400 by tracking the markers on the crown 2400. And in yet another embodiment, the outer ring of marker-based cameras 2318-2322 tracks both the crown of markers 2400 and markers 2314-2316 on the inner ring of random pattern- 25 based cameras 2310-2312, and determines the position of whatever markers are visible, while the inner ring of cameras 2310-2312 tracks whatever markers on the crown 2400 are visible. Both methods (tracking the crown of markers 2400 and tracking the markers on the cameras) are used to deter- 30 mine the position of the inner cameras 2310-2312 in the capture volume, so that if for a given frame one method fails to determine an inner camera's 2310-1212 position (e.g. if markers are obscured) the other method is used if it is available.

In an alternate embodiment of the camera positioning, each group of cameras may be placed in an arc, line, or any other geometric configuration, and are not limited to circles or circular configurations. In addition, more than two groups of cameras may be used. For example, if the application requires 40 it, four rings of cameras may be configured for the motion capture system.

Hardware and/or Software Implementation of the Present Invention

Embodiments of the invention may include various steps as set forth above. The steps may be embodied in machine-executable instructions which cause a general-purpose or special-purpose processor to perform certain steps. Various 50 elements which are not relevant to the underlying principles of the invention such as computer memory, hard drive, input devices, have been left out of the figures to avoid obscuring the pertinent aspects of the invention.

Alternatively, in one embodiment, the various functional 55 modules illustrated herein and the associated steps may be performed by specific hardware components that contain hardwired logic for performing the steps, such as an application-specific integrated circuit ("ASIC") or by any combination of programmed computer components and custom hardware components.

Elements of the present invention may also be provided as a machine-readable medium for storing the machine-executable instructions. The machine-readable medium may include, but is not limited to, flash memory, optical disks, 65 CD-ROMs, DVD ROMs, RAMs, EPROMs, EEPROMs, magnetic or optical cards, propagation media or other type of

26

machine-readable media suitable for storing electronic instructions. For example, the present invention may be downloaded as a computer program which may be transferred from a remote computer (e.g., a server) to a requesting computer (e.g., a client) by way of data signals embodied in a carrier wave or other propagation medium via a communication link (e.g., a modem or network connection).

Throughout the foregoing description, for the purposes of explanation, numerous specific details were set forth in order to provide a thorough understanding of the present system and method. It will be apparent, however, to one skilled in the art that the system and method may be practiced without some of these specific details. Accordingly, the scope and spirit of the present invention should be judged in terms of the claims which follow.

What is claimed is:

- 1. A method comprising:
- applying a random pattern of material to specified regions of a performer's face, body and/or clothing;
- capturing sequences of images of the random pattern with a first plurality of cameras as the performer moves and/ or changes facial expressions during a motion capture session:
- correlating the random pattern across two or more images captured from two or more different cameras to create a 3-dimensional surface of the specified regions of the performer's face, body, and/or clothing;
- generating motion data representing the movement of the 3-dimensional surface across the sequence of images;
- strobing a light source on and off, the light source charging the random pattern when on; and
- strobing the shutters of a first plurality of cameras synchronously with the strobing of the light source to capture the sequences of images of the random pattern ("glow frames") as the performer moves or changes facial expressions during a performance, wherein the shutters of the first plurality of cameras are open when the light source is off and the shutters are closed when the light source is on.
- 2. The method as in claim 1 wherein the material is phosphorescent paint.
 - 3. The method as in claim 1 further comprising:
 - strobing the shutters of a second plurality of cameras synchronously with the strobing of the light source to capture images of the performer ("lit frames"), wherein the shutters of the second plurality of cameras are open when the light source is on and the shutters of the second plurality of cameras are closed when the light source is off.
- **4**. The method as in claim **3** wherein the first plurality of cameras are grayscale cameras and the second plurality of cameras are color cameras.
 - 5. The method as in claim 3 further comprising: separating the lit frames from the glow frames to generate two separate sets of image data.
- 6. The method as in claim 3 wherein cameras capturing the lit frames have a sensitivity which is different from cameras capturing the glow frames.
- 7. The method as in claim 3 wherein color cameras are used to capture the lit frames and grayscale cameras are used to capture the glow frames.
- **8**. The method as in claim **7** wherein the grayscale cameras have a relatively higher sensitivity than the color cameras.
- 9. The method as in claim 7 wherein two different synchronization signals are used to control the shutters of the color and grayscale cameras.

25

27

- 10. The method as in claim 9 wherein the different synchronization signals are 180 degrees out of phase.
- 11. The method as in claim 1 wherein the light source comprises a light emitting diode (LED) array.
- 12. The method as in claim 1 wherein strobing the shutters 5 comprises opening the shutters for a first period of time and closing the shutters for a second period of time, the second period of time being of a different duration than the first period of time.
- **13**. The method as in claim **12** wherein the first period of 10 time is longer than the second period of time.
- 14. The method as in claim 1 wherein the camera shutters are controlled by synchronization signals from a computer system.
 - 15. The method as in claim 1 further comprising:
 - opening the shutters for a first period of time when the light source is on; and
 - opening the shutters for a second period of time when the light source is off;
 - wherein the first and second periods of time are unequal. 20 in capturing the images
- **16.** The method as in claim **1** wherein strobing the shutters further comprises:
 - opening the shutters for a period of time when the light source is on to capture images of the performers face, body, and/or clothing ("lit frame").
- 17. The method as in claim 16 wherein after being opened to capture a lit frame, the shutters are closed and then opened again when the light source is off to capture a glow frame, and then closed and then opened again when the light source is on to capture the next lit frame.
- 18. The method as in claim 16 wherein strobing the shutters comprises opening the shutters for a first period of time and closing the shutters for a second period of time wherein the first period of time is not equal to the second period of time.
 - 19. The method as in claim 18 further comprising:
 - opening the shutters for a relatively shorter period of time when the light source is on; and
 - opening the shutters for a relatively longer period of time when the light source is off.
 - 20. The method as in claim 16 further comprising: separating the lit frames from the glow frames to generate two separate sets of image data.
 - 21. The method as in claim 16 further comprising: alternating sensitivity, of the cameras between capturing the lit frames and the glow frames.
- 22. The method as in claim 1 wherein correlating the random pattern further comprises:
 - performing a first correlation at a first resolution for each of the two or more images using overlapping fields of view of the two or more cameras.
- 23. The method as in claim 22 wherein correlating the random pattern further comprises:
 - performing a second correlation at a second resolution for each of the two or more images to render the 3-dimensional surface, wherein the first resolution is lower than 55 the second resolution.
- 24. The method as in claim 1 wherein the two or more images are captured at substantially the same point in time.
- **25**. The method as in claim 1 wherein the two or more images are captured in sequence at different points in time. 60
 - 26. The method as in claim 1 further comprising:
 - capturing a series of images of the performer's face, body, and/or clothing; and
 - using the images as a texture map corresponding to regions of the random pattern.
- 27. The method as in claim 1 wherein applying the random pattern comprises:

28

- applying phosphorescent material to a sponge; and applying the sponge upon the performer's face, body, and/or clothing.
- **28**. The method as in claim **1** wherein applying the random pattern comprises:
 - spraying the random pattern of material on the performer's face, body, and/or clothing with an airbrush.
- 29. The method as in claim 1 wherein applying the random pattern comprises:
 - applying paint to the performer's face, body, and/or clothing through a stencil.
- **30**. The method as in claim **1** wherein applying the random pattern comprises:
 - flicking a wire brush containing paint such that droplets of paint are splattered onto the surface to be captured.
- 31. The method as in claim 1 wherein the random pattern is applied with paint viewable in visible light.
- 32. The method as in claim 31 wherein visible light is used in capturing the images
 - 33. A method comprising:
 - applying a random pattern of phosphorescent material to specified regions of a performer's face, body and/or clothing:
 - strobing a light source on and off, the light source charging the random pattern when on; and
 - strobing the shutters of the first plurality of cameras synchronously with the strobing of the light source to capture sequences of images of the random pattern ("glow frames") as the performer moves or changes facial expressions during a performance, wherein the shutters of the first plurality of cameras are open when the light source is off and the shutters are closed when the light source is on.
- **34**. The method as in claim **33** wherein the phosphorescent material is phosphorescent paint.
 - 35. The method as in claim 33 further comprising:
 - tracking the motion of the phosphorescent paint over time; and
 - generating motion data representing the movement of the performer's face and/or body using the tracked movement of the phosphorescent paint.
- **36**. The method as in claim **33** wherein the phosphorescent paint is applied as a series of curves on the performer's face.
- 37. The method as in claim 33 wherein the phosphorescent paint is applied as a series of markers at specified areas of the performer's body.
 - 38. The method as in claim 33 further comprising:
 - strobing the shutters of a second plurality of cameras synchronously with the strobing of the light source to capture images of the performer ("lit frames"), wherein the shutters of the second plurality of cameras are open when the light source is on and the shutters of the second plurality of cameras are closed when the light source is off.
- **39**. The method as in claim **38** wherein the first plurality of cameras are grayscale cameras and the second plurality of cameras are color cameras.
 - 40. The method as in claim 38 further comprising:
 - separating the lit frames from the glow frames to generate two separate sets of image data.
- **41**. The method as in claim **38** wherein cameras capturing the lit frames have a sensitivity which is different from cameras capturing the glow frames.
 - **42**. The method as in claim **38** further comprising: opening the shutters for a first period of time when the light source is on; and

29

opening the shutters for a second period of time when the light source is off;

wherein the first and second periods of time are unequal.

- 43. The method as in claim 38 wherein color cameras are used to capture the lit frames and grayscale cameras are used to capture the glow frames.
- **44**. The method as in claim **43** wherein the grayscale cameras have a relatively higher sensitivity than the color cameras.
- **45**. The method as in claim **43** wherein two different synchronization signals are used to control the shutters of the color and grayscale cameras.
- **46**. The method as in claim **45** wherein the different synchronization signals are 180 degrees out of phase.
- 47. The method as in claim 33 wherein the light source comprises a light emitting diode (LED) array.
- **48**. The method as in claim **33** wherein strobing the shutters comprises opening the shutters for a first period of time and closing the shutters for a second period of time, the second period of time being of a different duration than the first period of time.
- **49**. The method as in claim **48** wherein the first period of time is longer than the second period of time.
- 50. The method as in claim 33 wherein the camera shutters are controlled by synchronization signals from a computer system.
- 51. The method as in claim 33 wherein strobing the shutters further comprises:
 - opening the shutters for a period of time when the light source is on to capture images of the performers face and/or body.

30

- **52**. The method as in claim **51** wherein after being opened to capture a lit frame, the shutters are closed and then opened again when the light source is off to capture the next glow frame, and then closed and then opened again when the light source is on to capture the next lit frame.
 - 53. The method as in claim 52 further comprising: generating motion data representing the movement of the 3-dimensional surface across the sequence of images.
- **54**. The method as in claim **51** wherein strobing the shutters comprises opening the shutters for a first period of time and closing the shutters for a second period of time wherein the first period of time is not equal to the second period of time.
 - 55. The method as in claim 54 further comprising: opening the shutters for a relatively shorter period of time when the light source is on; and
 - opening the shutters for a relatively longer period of time when the light source is off.

 56. The method as in claim 51 further comprising:
 - **56**. The method as in claim **51** further comprising: separating the lit frames from the glow frames to generate two separate sets of image data.
 - 57. The method as in claim 51 further comprising: alternating sensitivity, of the cameras between capturing the lit frames and the glow frames.
 - 58. The method as in claim 33 further comprising: correlating the random pattern across two or more images captured from the first plurality of cameras to create a 3-dimensional surface of the specified regions of the performer's face, body, and/or clothing.

* * * * *

Exhibit 4

(12) United States Patent

Perlman et al.

US 7,548,272 B2 (10) Patent No.: (45) **Date of Patent:** Jun. 16, 2009

(54) SYSTEM AND METHOD FOR PERFORMING MOTION CAPTURE USING PHOSPHOR APPLICATION TECHNIQUES

(75) Inventors: Stephen G. Perlman, Palo Alto, CA

(US); John Speck, Sunnyvale, CA (US); Roger Van der Laan, Menlo Park, CA

(US); Kenneth A. Pearce, San Francisco, CA (US); Lisa Jo Cohen, Sunnyvale, CA (US); Kelly Leigh Tunstall, San Francisco, CA (US)

(73) Assignee: OnLive, Inc., Palo Alto, CA (US)

Subject to any disclaimer, the term of this (*) Notice:

patent is extended or adjusted under 35

U.S.C. 154(b) by 449 days.

Appl. No.: 11/449,127

(22)Filed: Jun. 7, 2006

(65)**Prior Publication Data**

US 2007/0285514 A1 Dec. 13, 2007

(51) Int. Cl. (2006.01)H04N 7/18 H04N 5/225 (2006.01)H04N 5/228 (2006.01)H04N 5/222 (2006.01)

U.S. Cl. **348/371**; 348/77; 348/169; 348/208.14; 348/370

348/371, 218.1, 77, 157 See application file for complete search history.

(56)**References Cited**

U.S. PATENT DOCUMENTS

3,335,716	Α	*	8/1967	Alt et al	600/476
3,699,856	Α		10/1972	Chabot et al.	
4,389,670	\mathbf{A}		6/1983	Davidson et al.	
4,417,791	\mathbf{A}		11/1983	Erland et al.	
5,235,416	Α		8/1993	Stanhope	

4/1994 Wickersheim 250/458.1 5,304,809 A * 5,480,341 A 1/1996 Plakos et al.

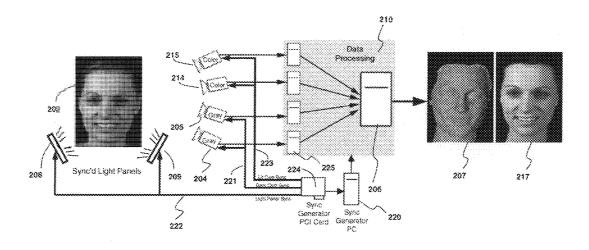
(Continued)

FOREIGN PATENT DOCUMENTS

WO WO-9955220 11/1999

OTHER PUBLICATIONS

Guenter et al., "Making Faces", International Conference on Computer Graphics and Interactive Techniques, Proceedings of the 25th annual conference on Computer graphics and interactive techniques, pp. 55-66, 1998.*


(Continued)

Primary Examiner—David L Ometz Assistant Examiner—Richard M Bemben (74) Attorney, Agent, or Firm—Blakely Sokoloff Taylor & Zafman LLP

(57)**ABSTRACT**

A system and method are described for performing motion capture on a subject. For example, a method according to one embodiment of the invention comprises: mixing phosphorescent makeup with a makeup base; applying the mixture of phosphorescent makeup and makeup base to surface regions of a motion capture subject; strobing a light source on and off, the light source charging phosphor within the phosphorescent makeup when on; and strobing the shutters of a first plurality of cameras synchronously with the strobing of the light source to capture images of the phosphorescent makeup, wherein the shutters are open when the light source is off and the shutters are closed when the light source is on.

24 Claims, 27 Drawing Sheets (6 of 27 Drawing Sheet(s) Filed in Color)

US 7,548,272 B2

Page 2

U.S. PATENT DOCUMENTS

5 5 10 9 26	4	5/1996	Harmor et al
5,519,826		10/1996	Harper et al. Sarada et al.
5,569,317			COMMON TO CO.
5,699,798	Λ.	12/1997	Hochman et al 600/420
5,852,672		12/1998	Lu
5,878,283		3/1999	House et al.
5,966,129		10/1999	Matsukuma et al.
6,020,892		2/2000	Dillon 345/419
6,151,118		11/2000	Norita et al.
6,513,921		2/2003	Houle
6,592,465		7/2003	Lutz et al 473/198
6,633,294	B1 *	10/2003	Rosenthal et al 345/474
6,850,872	B1	2/2005	Marschner et al.
7,068,277	B2 *	6/2006	Menache 345/473
7,075,254	B2	7/2006	Chitta et al.
7,184,047	B1	2/2007	Crampton
7,218,320	B2 *	5/2007	Gordon et al 345/419
7,333,113	B2 *	2/2008	Gordon 345/475
7,358,972	B2 *	4/2008	Gordon et al 345/473
7,369,681	B2	5/2008	Foth et al.
2003/0095186	A1*	5/2003	Aman et al 348/162
2004/0072091	$\mathbf{A}1$	4/2004	Mochizuki et al.
2004/0155962	A1	8/2004	Marks
2005/0104543	$\mathbf{A}1$	5/2005	Kazanov et al.
2005/0174771	A1	8/2005	Conner
2006/0055706	A1	3/2006	Perlman et al.
2006/0061680	A1*	3/2006	Madhavan et al 348/370
2006/0192785	A1	8/2006	Marschner et al.
2006/0203096		9/2006	LaSalle et al 348/208.14
2007/0273951	A1*	11/2007	Ribi
2007/0285559		12/2007	Perlman et al 348/371
2007, 0200000		12,2007	1 eminar et al 5 10/5/1

OTHER PUBLICATIONS

Radovan et al., "Facial animation in a nutshell: past, present and future", Proceedings of the 2006 annual research conference of the South African institute of computer scientists and information technologists on IT research in developing couuntries, p. 71-79, Oct. 9-11, 2006, Somerset West, South Africa.*

Chuang and Bregler, "Performance driven facial animation using blendshape interpolation", Computer Science Department, Stanford University.*

Wang et al., "Assembling an expressive facial animation system", ACM Siggraph Video Game Symposium, Proceedings of the 2007 ACM SIGGRAPH symposium on Video games, pp. 21-6, 2007.*

PCT Search Report, Application No. PCT/US07/13468, mailed Apr. 22, 2008, 4 Pages.

PCT "Written Opinion", Application No. PCT/US07/13468, Mailed Apr. 22, 2008, 6 Pages.

Office Action from U.S. Appl. No. 11/449,043, mailed Jan. 5, 2009, 16 pgs.

Office Action from U.S. Appl. No. 11/449,131, mailed Dec. 29, 2008, 12 pgs.

Office Action from U.S. Appl. No. 11/077,628, mailed Feb. 13, 2009, 24 pgs.

Office Action from U.S. Appl. No. 11/255,854, mailed Feb. 23, 2009,

Bourke, P., "Cross Correlation", "Cross Correlation", Auto Correlation -- 2D Pattern Identification, Aug. 1996, printed on Oct. 29, 2005, http://astonomy.swin.edu.au/~pbourke/other/correlat/.

Chuang & Bregler, et al., "Performance Driven Facial Animation using Blendshape Interpolation", Computer Science Department, Stanford University, (Apr. 2002), 8 pages.

Graham, M Ian, "The Power of Texture: A New Approach for Surface Capture of the Human Hand", Carnegie Mellon University Computer Science Department, (Apr. 30, 2004), pp. 1-23.

Guenter, Brian, et al., "Making Faces", "Making Faces", International Conference om Computer Graphics and Interactive Techniques, Proceedings of the 25th annual conference on computer graphics and interactive techniques, pp. 55-66, 1998.

Guskov, "Direct Pattern Tracking On Flexible Geometry", 6 pages, Winter School of Computer Graphics, 2002, University of Michigan, (2002).

Guskov, Igor, et al., "Trackable Surfaces", Eurographics/SIG-GRAPH Symposium on Computer Animation, (Jul. 2003), pp. 251-257 and 379.

Motionanalysis, "Hawk Digital System", www.motionanalysis.com/applications/animation/games/hawksytem.html, 4 pgs., printed on Feb. 25, 2005, (Feb. 25, 2005), 4 pages.

Motionanalysis, "The Motion Capture Leader, The Undisputed Leader for 3D Optical Motion Capture System", www. motionanaylsis.com/, (Jan. 27, 2005), 1 page.

Motionanalysis, "Eagle Digital System", www.motionanalysis.com/applications/animation/games/eaglesystem.html, 4 pgs., printed on Feb. 25, 2005, (Feb. 25, 2005), 4 pages.

Motionalalysis, "Falcon Analog System", www.motionanaylisi.com/applications/animation/games/falconsystem.html, 4 pgs., printed on Feb. 25, 2005, (Feb. 25, 2005), 4 pages.

Motionanalysis, "Video Game Products", www.motionanalysis. com/applications/animation/games/products.html, printed Feb. 25, 2005, (Feb. 25, 3005), 1 page.

Parke, Frederick I., "Computer Generated Animating of Faces", SIG-GRAPH 1972, (1972), pp. 451-457.

Radovan, Mauricip, et al., "facial Animation in a Nutshell: Past, Present and Future", Proceedings of the 2006 annual research conference of the South African institute of computer scientists and information technologie on IT research in developing countries, pp. 71-79, (2006).

Scott, Reminton, "Sparking Life Notes on the Performance Capture Sessions for The Lord of the Rings: The Two Towers", ACM SIG-GRAPH, vol. 37, No. 4, (Nov. 2003), 17-21 pages.

Vicon, "Vicon Motion Systems // MX13, MX13 Camera, The MX13 1.3 Million-pixel Motion Capture Camera", www.vicon.com/jsp/products/prdouct-detail.jsp?id=170, (Feb. 25, 2005), 2 pages.

Vicon, "Vicon Motion Systems // MX3, MX3 Camera, The MX3 0.3 Million-pixel Motion Capture Camera", www.vicon.com/jsp/products/product-detail.jsp?id=173, (Feb. 25, 2005), 2 pages.

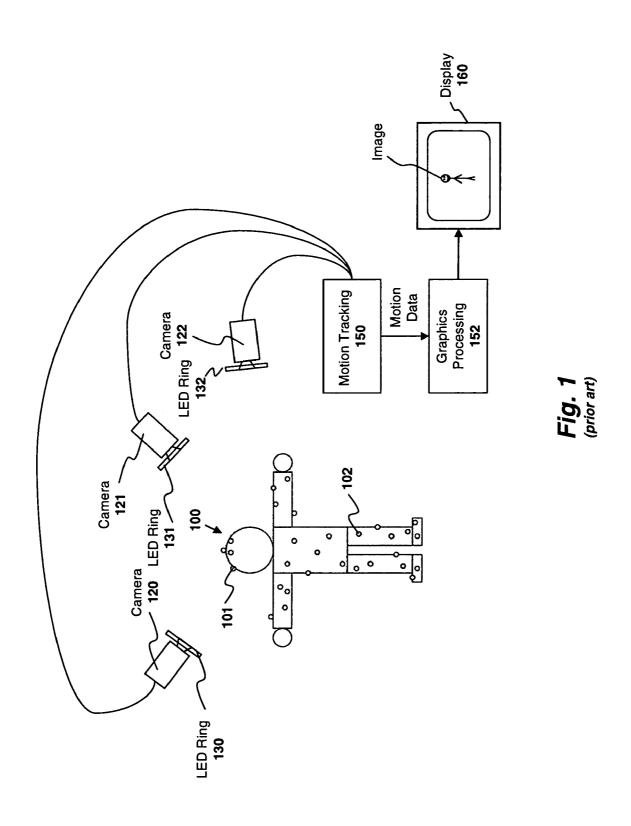
Vicon, "Vicon Motion Systems // MX40, MX40 Camera, The MX40 4 Million-pixel Motion Capture Cmaera", www.vicon.com/jsp/products/product-detail.jsp?id=167, 2 pgs., printed on Feb. 25, 2005, (Feb. 25, 2005), 2 page.

Vicon, "Vicon motion Systems // SV Cam", www.vicon.com/jsp/products/product-detail.jsp?id+189, (Feb. 25, 2005), 1 page.

Vicon, "Vicon Systems Ltd.", www.vicon.com/jsp/index.jsp, cited as Vicon Motion Picture Ltd. but that wa named incorrectly. Correct title is Vicon Systems Ltd. (Feb. 25, 2005), 2 pages.

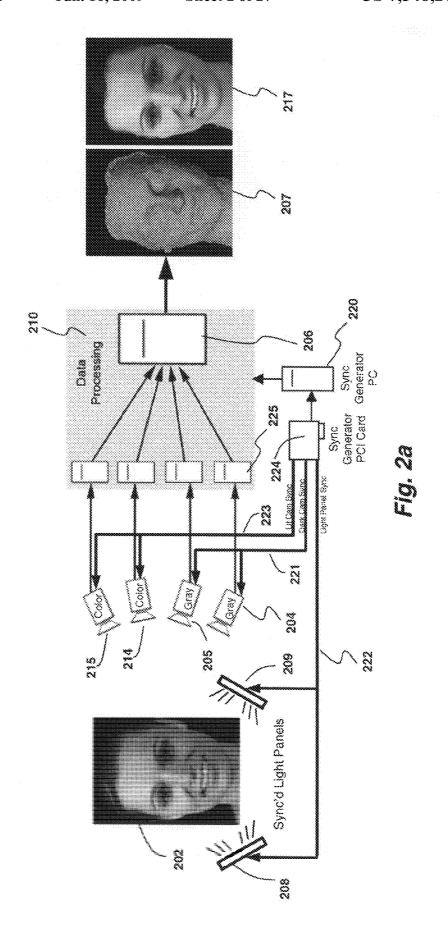
Vicon-Products, "MX System: Cameras, The Most Powerful, Practical and Versatile Range of Motion Capture Cameras", www.vicon.com/jsp/products/product-category.jsp?cat=cameras, (feb. 25, 2006), 1 page.

Vicon-Products, "Vicon MX: System Overview", www.vicon.com/jsp/products/product-overview.jsp, (Feb. 25, 2005), 2.

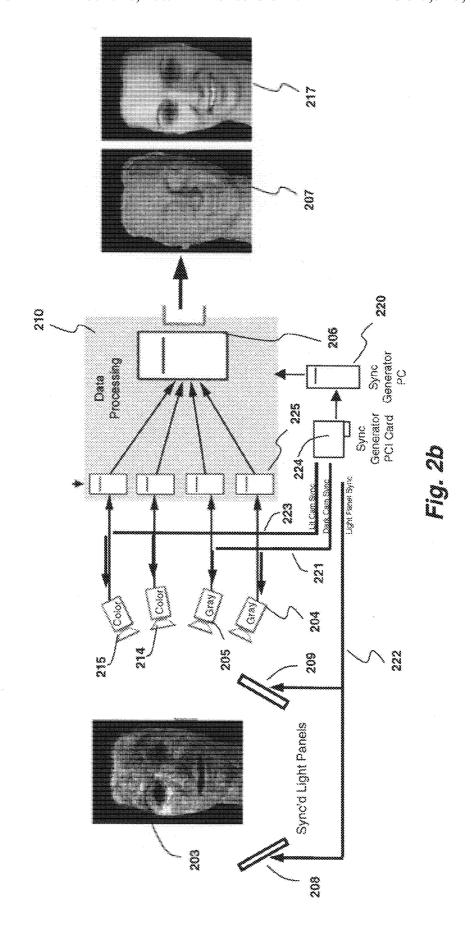

Wang, Alice, et al., "Assembling an Expressive Facial Animation System", ACM Siggraph Video Game Symposium, Proceedings of the 2007 ACM AIGGRAPH symposium on Video games, pp. 21-26, 2007

Zhang, "Sapcetime Faces: High Resolution Capture for Modeling and Animation", 11 pages, ACM Transactions on Graphics, 2004, University of Washington.

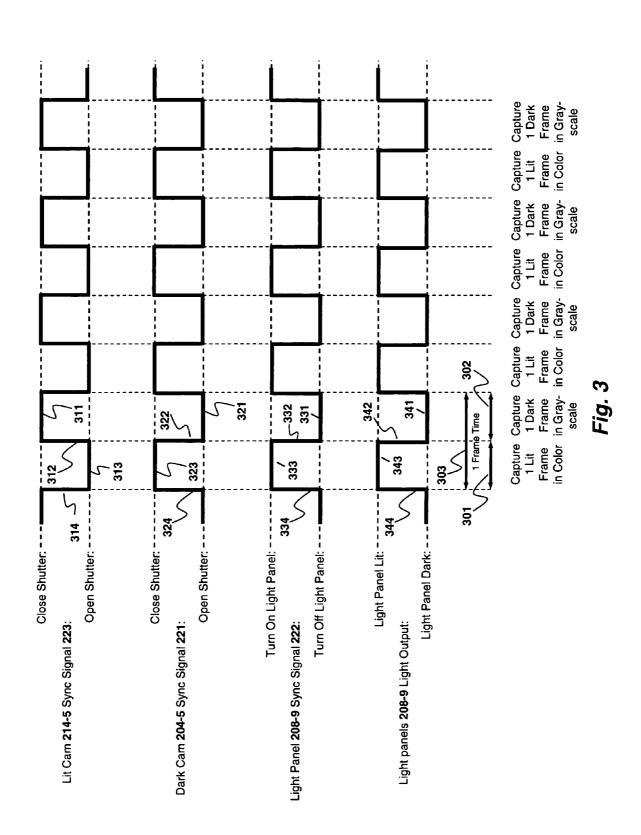
* cited by examiner


Jun. 16, 2009

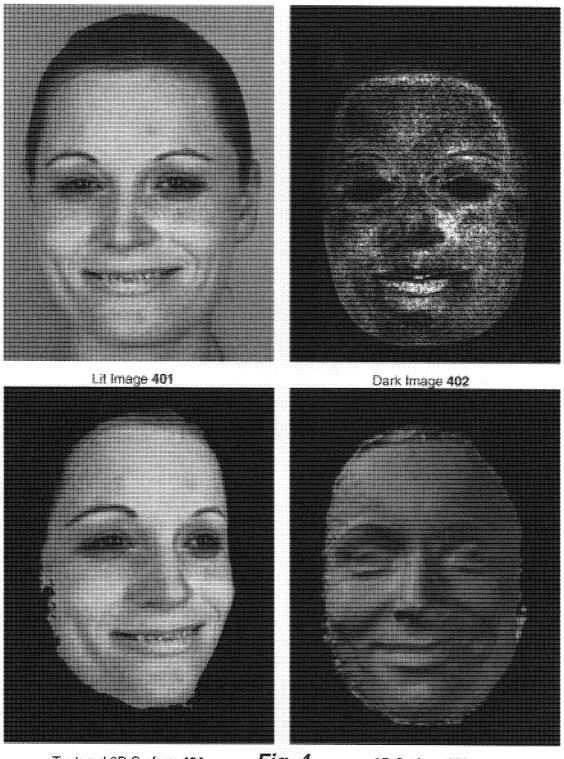
Sheet 1 of 27


Jun. 16, 2009

Sheet 2 of 27


Jun. 16, 2009

Sheet 3 of 27


Jun. 16, 2009

Sheet 4 of 27

Jun. 16, 2009

Sheet 5 of 27

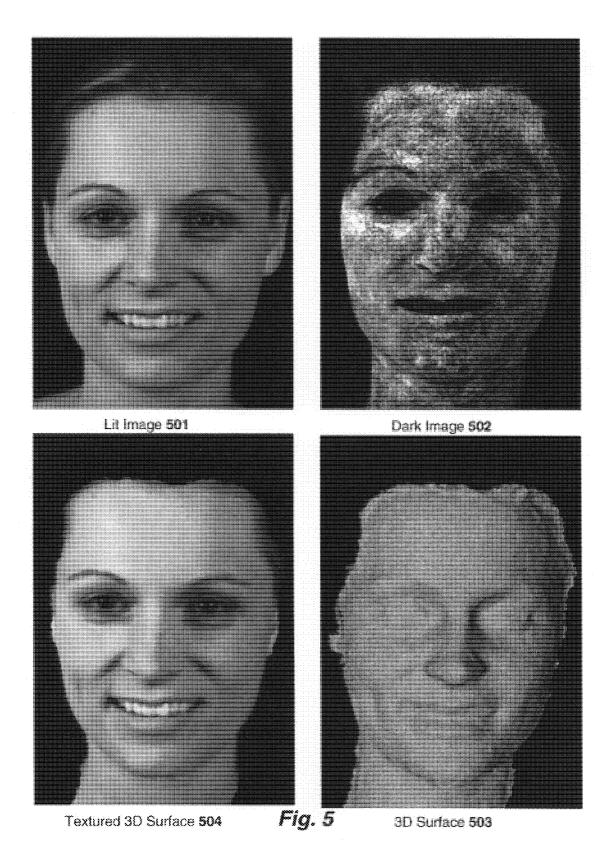
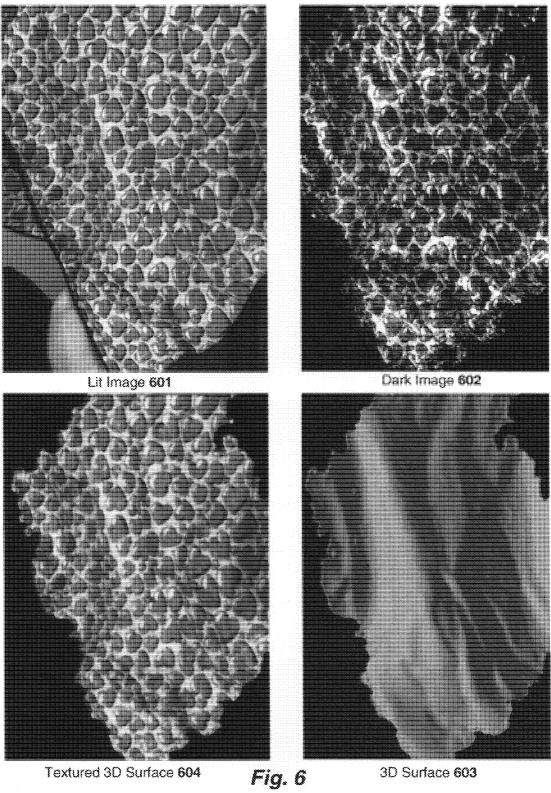
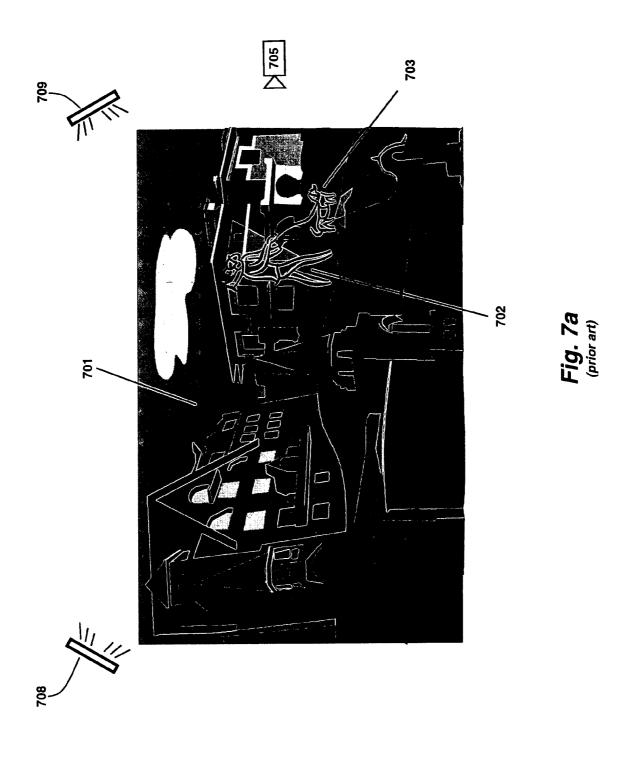

Textured 3D Surface 404

Fig. 4

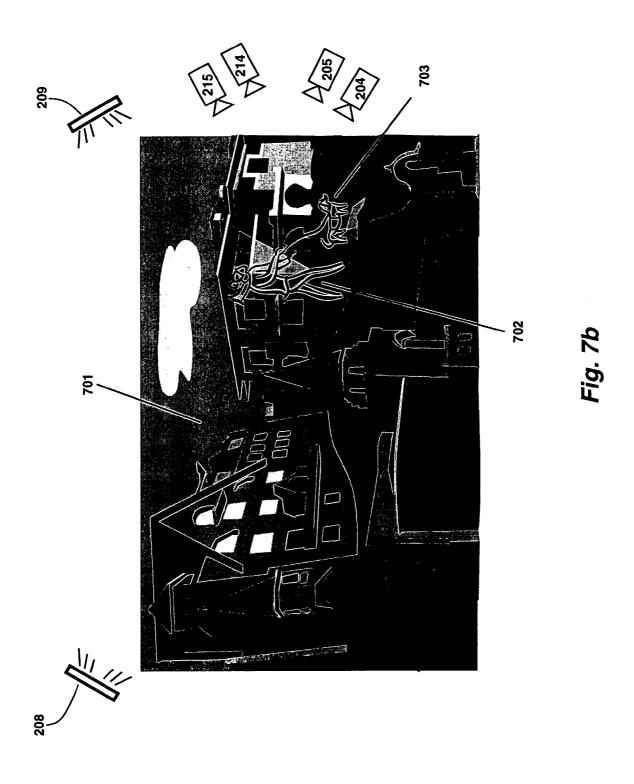
3D Surface **403**


Jun. 16, 2009

Sheet 6 of 27


Jun. 16, 2009

Sheet 7 of 27


Jun. 16, 2009

Sheet 8 of 27

Jun. 16, 2009

Sheet 9 of 27

Jun. 16, 2009

Sheet 10 of 27

US 7,548,272 B2

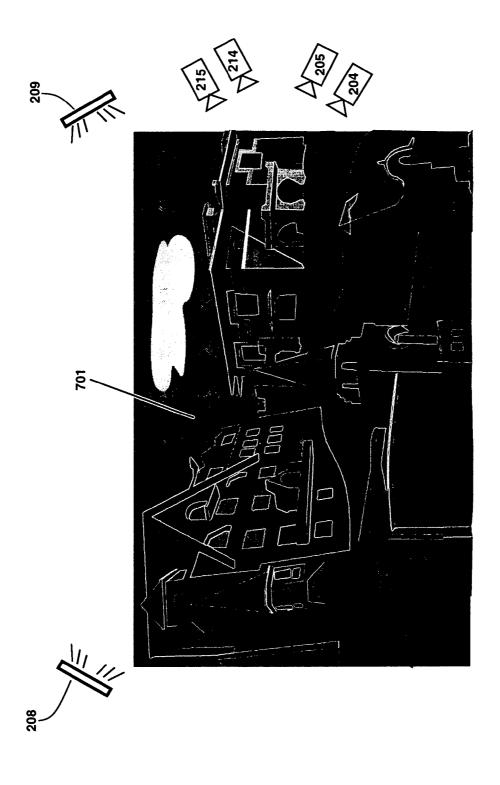
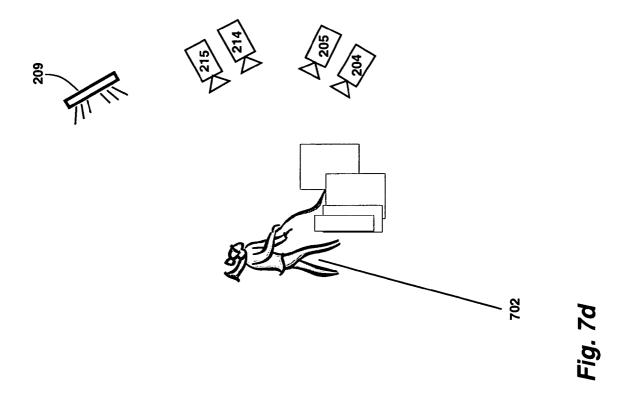
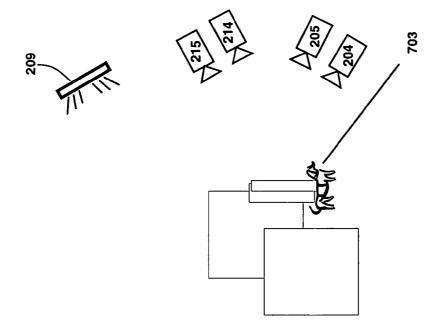



Fig. 7c

Jun. 16, 2009

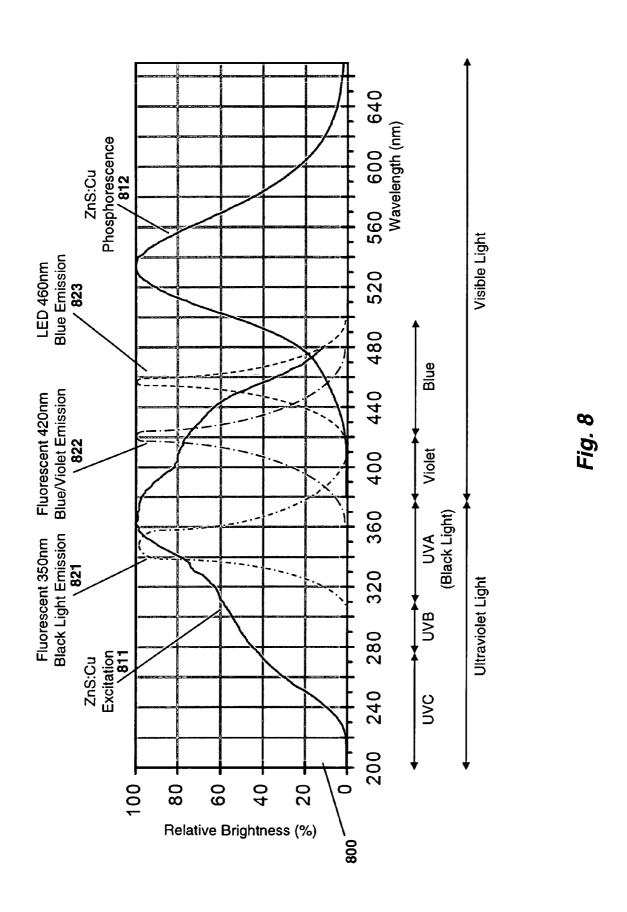
Sheet 11 of 27



Jun. 16, 2009

Sheet 12 of 27

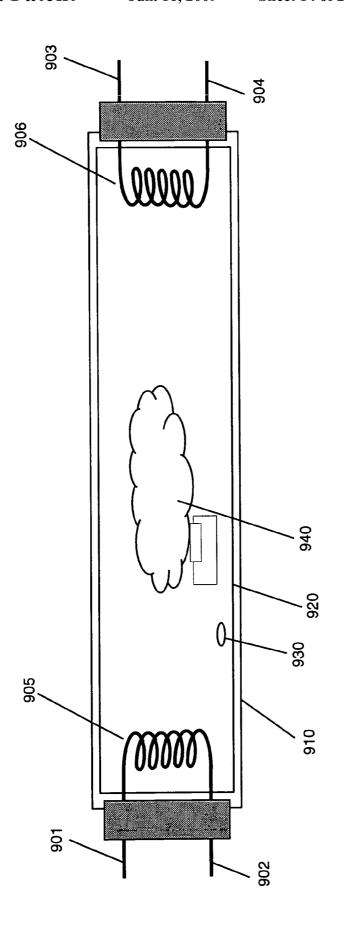
US 7,548,272 B2



⁻ig. 7e

Jun. 16, 2009

Sheet 13 of 27



U.S. Patent

Jun. 16, 2009

Sheet 14 of 27

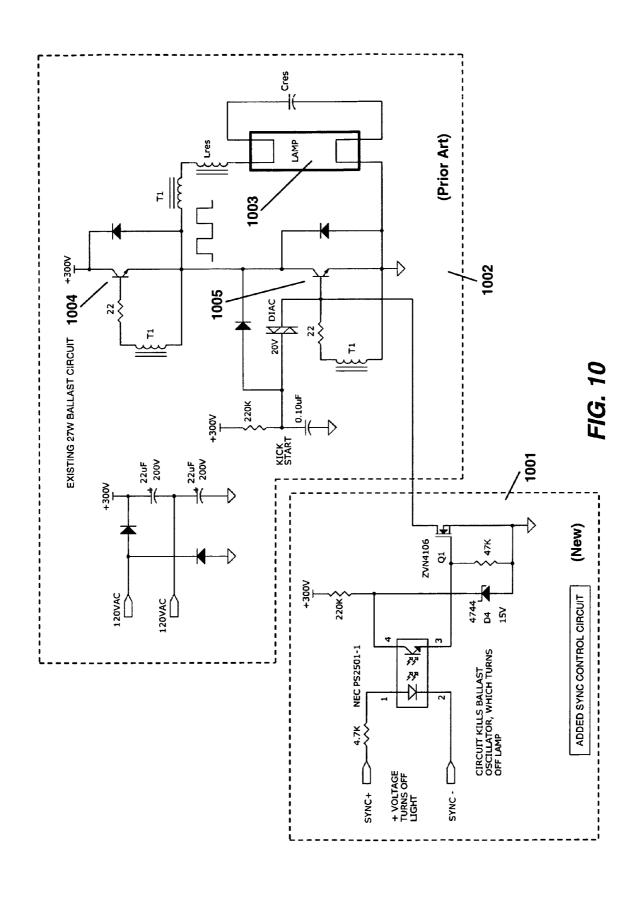

US 7,548,272 B2

FIG. 9 (Prior Art)

Jun. 16, 2009

Sheet 15 of 27

Jun. 16, 2009

Sheet 16 of 27

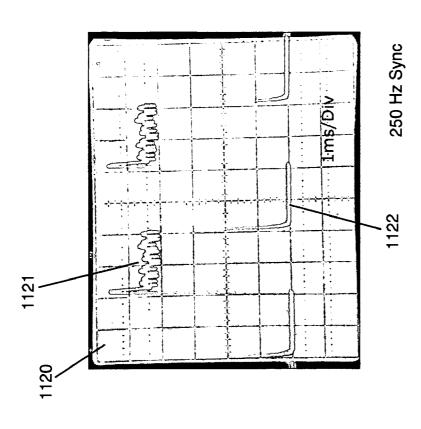
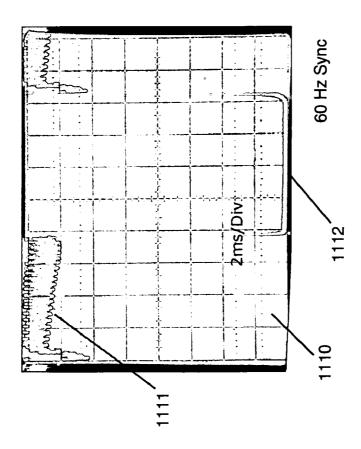
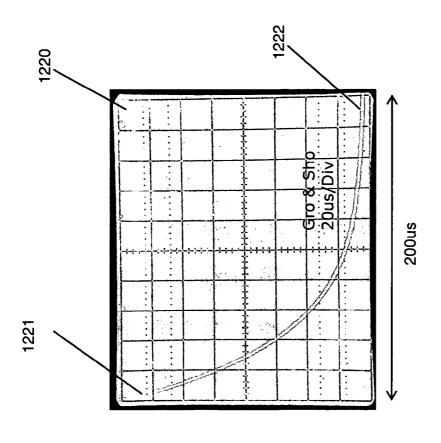




FIG. 11

Jun. 16, 2009

Sheet 17 of 27

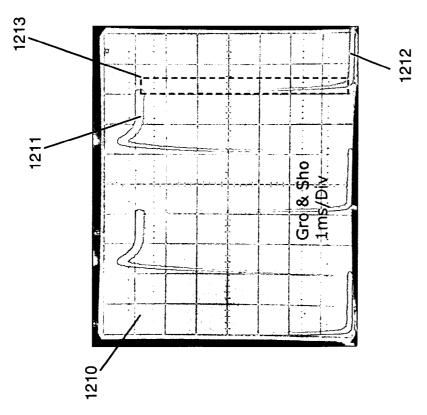
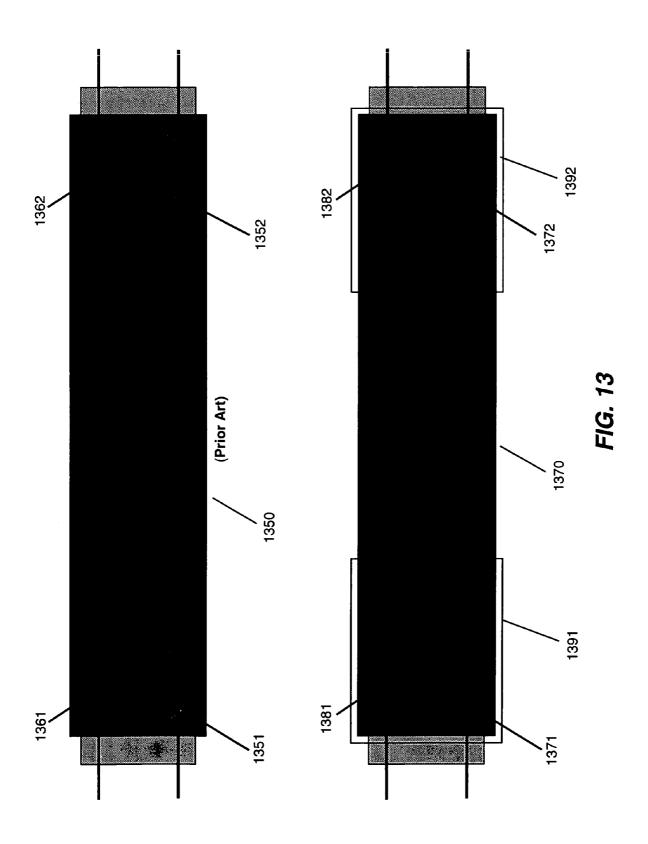
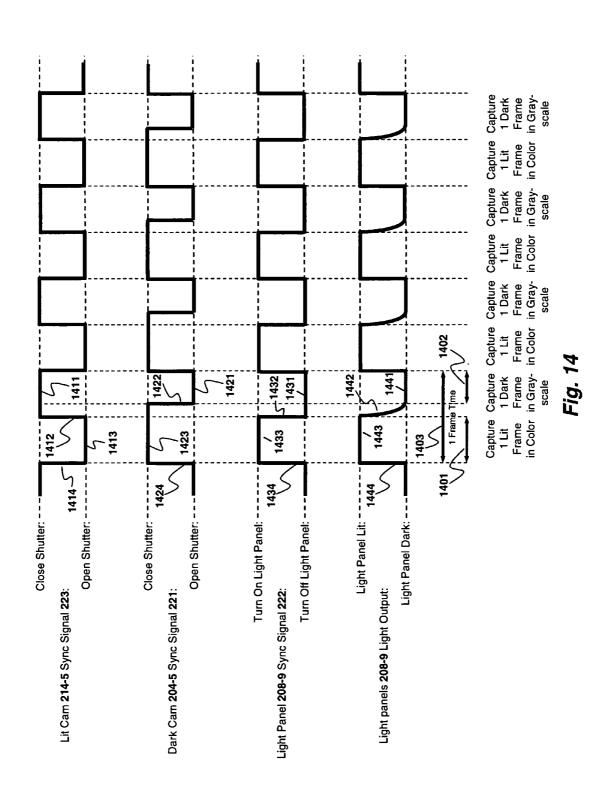
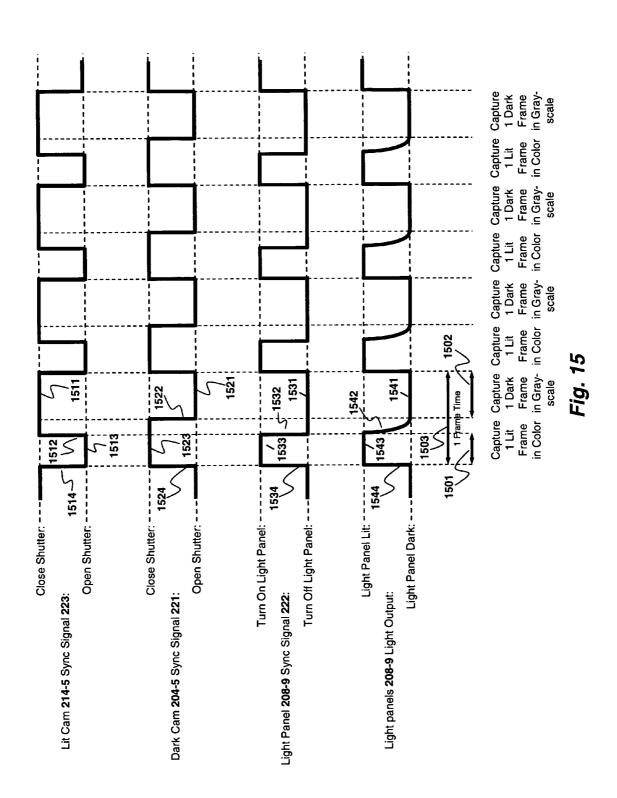



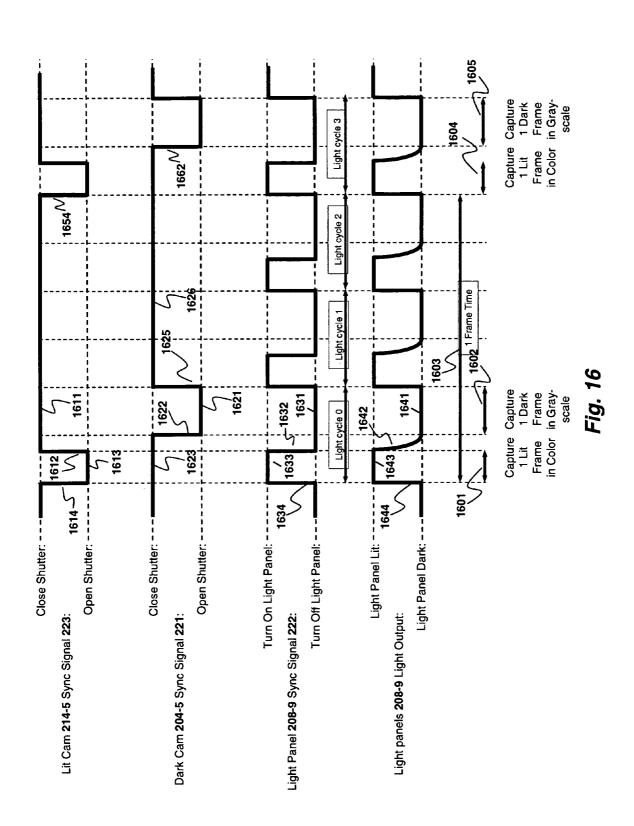
FIG. 12


Jun. 16, 2009

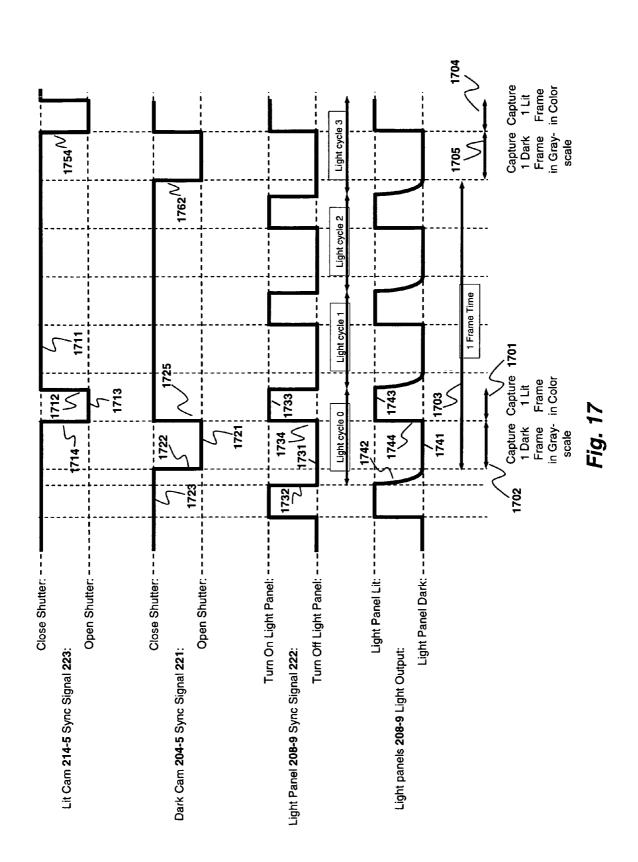
Sheet 18 of 27


Jun. 16, 2009

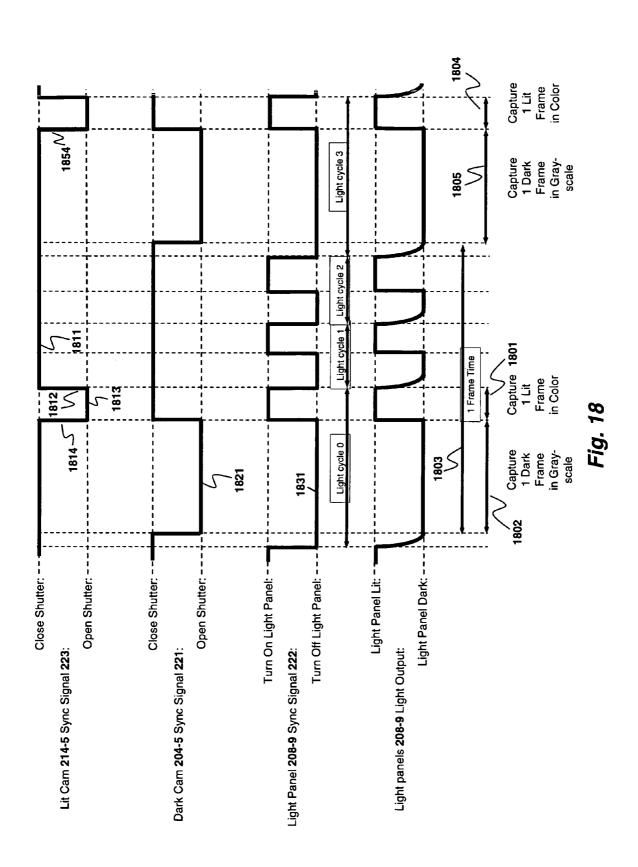
Sheet 19 of 27


Jun. 16, 2009

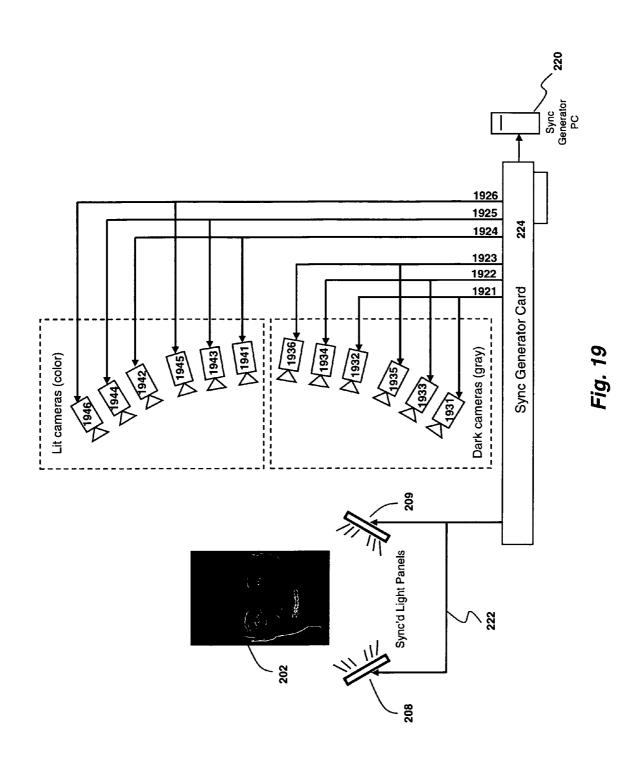
Sheet 20 of 27


Jun. 16, 2009

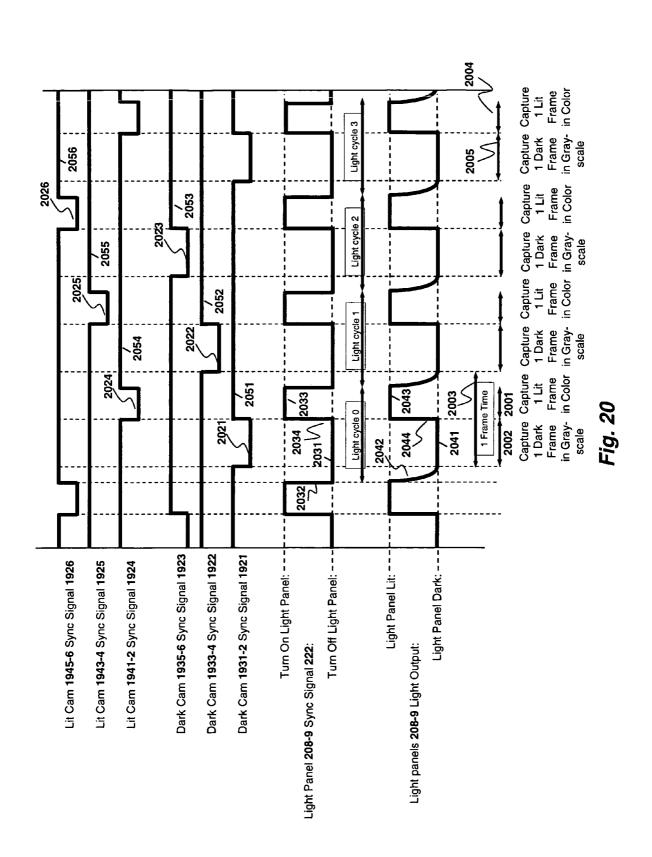
Sheet 21 of 27


Jun. 16, 2009

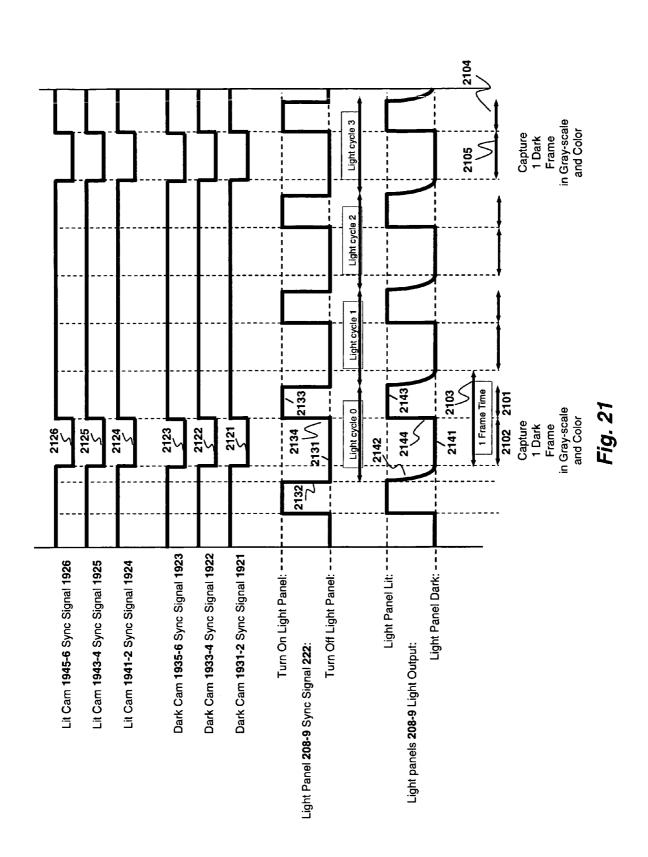
Sheet 22 of 27


Jun. 16, 2009

Sheet 23 of 27


Jun. 16, 2009

Sheet 24 of 27


Jun. 16, 2009

Sheet 25 of 27

Jun. 16, 2009

Sheet 26 of 27

U.S. Patent Jun. 16, 2009 Sheet 27 of 27

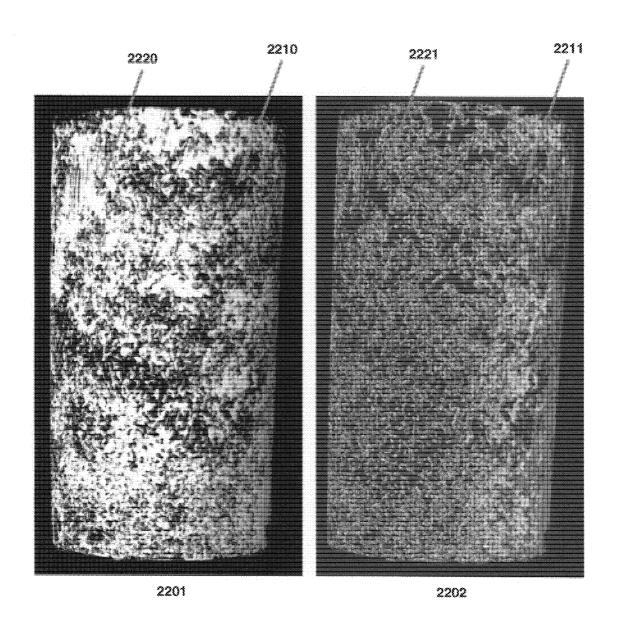


Fig. 22

1

SYSTEM AND METHOD FOR PERFORMING MOTION CAPTURE USING PHOSPHOR APPLICATION TECHNIQUES

BACKGROUND OF THE INVENTION

1. Field of the Invention

This invention relates generally to the field of motion capture. More particularly, the invention relates to an improved apparatus and method for performing motion capture using phosphor application techniques.

2. Description of the Related Art

"Motion capture" refers generally to the tracking and 15 recording of human and animal motion. Motion capture systems are used for a variety of applications including, for example, video games and computer-generated movies. In a typical motion capture session, the motion of a "performer" is captured and translated to a computer-generated character.

As illustrated in FIG. 1 in a motion capture system, a plurality of motion tracking "markers" (e.g., markers 101, 102) are attached at various points on a performer's 100's body. The points are selected based on the known limitations of the human skeleton. Different types of motion capture markers are used for different motion capture systems. For example, in a "magnetic" motion capture system, the motion markers attached to the performer are active coils which generate measurable disruptions x, y, z and yaw, pitch, roll in a magnetic field.

By contrast, in an optical motion capture system, such as that illustrated in FIG. 1, the markers 101, 102 are passive spheres comprised of retro-reflective material, i.e., a material 35 which reflects light back in the direction from which it came, ideally over a wide range of angles of incidence. A plurality of cameras 120, 121, 122, each with a ring of LEDs 130, 131, 132 around its lens, are positioned to capture the LED light reflected back from the retro-reflective markers 101, 102 and other markers on the performer. Ideally, the retro-reflected LED light is much brighter than any other light source in the room. Typically, a thresholding function is applied by the cameras 120, 121, 122 to reject all light below a specified level of brightness which, ideally, isolates the light reflected off of the reflective markers from any other light in the room and the cameras 120, 121, 122 only capture the light from the markers 101, 102 and other markers on the performer.

A motion tracking unit **150** coupled to the cameras is 50 programmed with the relative position of each of the markers **101**, **102** and/or the known limitations of the performer's body. Using this information and the visual data provided from the cameras **120-122**, the motion tracking unit **150** generates artificial motion data representing the movement of ⁵⁵ the performer during the motion capture session.

A graphics processing unit **152** renders an animated representation of the performer on a computer display **160** (or similar display device) using the motion data. For example, the graphics processing unit **152** may apply the captured motion of the performer to different animated characters and/or to include the animated characters in different computergenerated scenes. In one implementation, the motion tracking unit **150** and the graphics processing unit **152** are programmable cards coupled to the bus of a computer (e.g., such as the PCI and AGP buses found in many personal computers). One

2

well known company which produces motion capture systems is Motion Analysis Corporation (see, e.g., www.motionanalysis.com).

SUMMARY

A system and method are described for performing motion capture on a subject. For example, a method according to one embodiment of the invention comprises: mixing phosphorescent makeup with a makeup base; applying the mixture of phosphorescent makeup and makeup base to surface regions of a motion capture subject; strobing a light source on and off, the light source charging phosphor within the phosphorescent makeup when on; and strobing the shutters of a first plurality of cameras synchronously with the strobing of the light source to capture images of the phosphorescent makeup, wherein the shutters are open when the light source is off and the shutters are closed when the light source is on.

BRIEF DESCRIPTION OF THE DRAWINGS

The patent or application file contains at least one drawing executed in color. Copies of this patent or patent publication with color drawing(s) will be provided by the U.S. Patent and Trademark Office upon request and payment of the necessary fee

A better understanding of the present invention can be obtained from the following detailed description in conjunction with the drawings, in which:

FIG. 1 illustrates a prior art motion tracking system for tracking the motion of a performer using retro-reflective markers and cameras.

FIG. 2a illustrates one embodiment of the invention during a time interval when the light panels are lit.

FIG. 2b illustrates one embodiment of the invention during a time interval when the light panels are dark.

FIG. 3 is a timing diagram illustrating the synchronization between the light panels and the shutters according to one embodiment of the invention.

FIG. 4 is images of heavily-applied phosphorescent makeup on a model during lit and dark time intervals, as well as the resulting reconstructed 3D surface and textured 3D surface.

FIG. 5 is images of phosphorescent makeup mixed with base makeup on a model both during lit and dark time intervals, as well as the resulting reconstructed 3D surface and textured 3D surface.

FIG. **6** is images of phosphorescent makeup applied to cloth during lit and dark time intervals, as well as the resulting reconstructed 3D surface and textured 3D surface.

FIG. 7a illustrates a prior art stop-motion animation stage. FIG. 7b illustrates one embodiment of the invention where stop-motion characters and the set are captured together.

FIG. 7c illustrates one embodiment of the invention where the stop-motion set is captured separately from the characters.

FIG. 7d illustrates one embodiment of the invention where a stop-motion character is captured separately from the set and other characters.

FIG. 7*e* illustrates one embodiment of the invention where a stop-motion character is captured separately from the set and other characters.

FIG. **8** is a chart showing the excitation and emission spectra of ZnS:Cu phosphor as well as the emission spectra of certain fluorescent and LED light sources.

FIG. 9 is an illustration of a prior art fluorescent lamp.

3

FIG. 10 is a circuit diagram of a prior art fluorescent lamp ballast as well as one embodiment of a synchronization control circuit to modify the ballast for the purposes of the present invention.

FIG. 11 is oscilloscope traces showing the light output of a 5 fluorescent lamp driven by a fluorescent lamp ballast modified by the synchronization control circuit of FIG. 9.

FIG. 12 is oscilloscope traces showing the decay curve of the light output of a fluorescent lamp driven by a fluorescent lamp ballast modified by the synchronization control circuit 10 of FIG. 9.

FIG. 13 is a illustration of the afterglow of a fluorescent lamp filament and the use of gaffer's tape to cover the filament.

FIG. 14 is a timing diagram illustrating the synchronization 15 between the light panels and the shutters according to one embodiment of the invention.

FIG. 15 is a timing diagram illustrating the synchronization between the light panels and the shutters according to one embodiment of the invention.

FIG. 16 is a timing diagram illustrating the synchronization between the light panels and the shutters according to one embodiment of the invention.

FIG. 17 is a timing diagram illustrating the synchronization between the light panels and the shutters according to one embodiment of the invention.

As described in these co-pending applications, by analyzing curves or random patterns applied as makeup on a performer's face rather than discrete marked points or markers

FIG. 18 is a timing diagram illustrating the synchronization between the light panels and the shutters according to one embodiment of the invention.

FIG. **19** illustrates one embodiment of the camera, light 30 panel, and synchronization subsystems of the invention during a time interval when the light panels are lit.

FIG. 20 is a timing diagram illustrating the synchronization between the light panels and the shutters according to one embodiment of the invention.

FIG. 21 is a timing diagram illustrating the synchronization between the light panels and the shutters according to one embodiment of the invention.

FIG. 22 illustrates one embodiment of the invention where color is used to indicate phosphor brightness.

DETAILED DESCRIPTION OF PREFERRED EMBODIMENTS

Described below is an improved apparatus and method for performing motion capture using shutter synchronization and/or phosphorescent makeup, paint or dye. In the following description, for the purposes of explanation, numerous specific details are set forth in order to provide a thorough understanding of the present invention. It will be apparent, however, to one skilled in the art that the present invention may be practiced without some of these specific details. In other instances, well-known structures and devices are shown in block diagram form to avoid obscuring the underlying principles of the invention.

The assignee of the present application previously developed a system for performing color-coded motion capture and a system for performing motion capture using a series of reflective curves painted on a performer's face. These systems are described in the co-pending applications entitled 60 "Apparatus and Method for Capturing the Motion and/or Expression of a Performer," Ser. No. 10/942,609, and Ser. No. 10/942,413, Filed Sep. 15, 2004. These applications are assigned to the assignee of the present application and are incorporated herein by reference.

The assignee of the present application also previously developed a system for performing motion capture of random

4

patterns applied to surfaces. This system is described in the co-pending applications entitled "Apparatus and Method for Performing Motion Capture Using A Random Pattern On Capture Surfaces," Ser. No. 11/255,854, Filed Oct. 20, 2005. This application is assigned to the assignee of the present application and is incorporated herein by reference.

The assignee of the present application also previously developed a system for performing motion capture using shutter synchronization and phosphorescent paint. This system is described in the co-pending application entitled "APPARATUS AND METHOD FOR PERFORMING MOTION CAPTURE USING SHUTTER SYNCHRONIZATION," Ser. No. 11/077,628, Filed Mar. 10, 2005 (hereinafter "Shutter Synchronization" application). Briefly, in the Shutter Synchronization application, the efficiency of the motion capture system is improved by using phosphorescent paint or makeup and by precisely controlling synchronization between the motion capture cameras' shutters and the illumination of the painted curves. This application is assigned to the assignee of the present application and is incorporated herein by reference.

SYSTEM OVERVIEW

As described in these co-pending applications, by analyzing curves or random patterns applied as makeup on a performer's face rather than discrete marked points or markers on a performer's face, the motion capture system is able to generate significantly more surface data than traditional marked point or marker-based tracking systems. The random patterns or curves are painted on the face of the performer using retro-reflective, non-toxic paint or theatrical makeup. In one embodiment of the invention, non-toxic phosphorescent makeup is used to create the random patterns or curves. By utilizing phosphorescent paint or makeup combined with synchronized lights and camera shutters, the motion capture system is able to better separate the patterns applied to the performer's face from the normally-illuminated image of the face or other artifacts of normal illumination such as highlights and shadows.

FIGS. 2a and 2b illustrate an exemplary motion capture system described in the co-pending applications in which a random pattern of phosphorescent makeup is applied to a performer's face and motion capture is system is operated in a light-sealed space. When the synchronized light panels 208-209 are on as illustrated FIG. 2a, the performers' face looks as it does in image 202 (i.e. the phosphorescent makeup is only slightly visible). When the synchronized light panels 208-209 (e.g. LED arrays) are off as illustrated in FIG. 2b, the performers' face looks as it does in image 203 (i.e. only the glow of the phosphorescent makeup is visible).

Grayscale dark cameras 204-205 are synchronized to the light panels 208-209 using the synchronization signal generator PCI Card 224 (an exemplary PCI card is a PCI-6601 manufactured by National Instruments of Austin, Tex.) 55 coupled to the PCI bus of synchronization signal generator PC 220 that is coupled to the data processing system 210 and so that all of the systems are synchronized together. Light Panel Sync signal 222 provides a TTL-level signal to the light panels 208-209 such that when the signal 222 is high (i.e. \geq 2.0V), the light panels 208-209 turn on, and when the signal 222 is low (i.e. ≤ 0.8 V), the light panels turn off. Dark Cam Sync signal 221 provides a TTL-level signal to the grayscale dark cameras 204-205 such that when signal 221 is low the camera 204-205 shutters open and each camera 204-205 captures an image, and when signal 221 is high the shutters close and the cameras transfer the captured images to camera controller PCs 205. The synchronization timing (explained in

detail below) is such that the camera 204-205 shutters open to capture a frame when the light panels 208-209 are off (the "dark" interval). As a result, grayscale dark cameras 204-205 capture images of only the output of the phosphorescent makeup. Similarly, Lit Cam Sync 223 provides TTL-level 5 signal to color lit cameras 214-215 such that when signal 221 is low the camera 204-205 shutters open and each camera 204-205 captures an image, and when signal 221 is high the shutters close and the cameras transfer the captured images to camera controller computers 225. Color lit cameras 214-215 are synchronized (as explained in detail below) such that their shutters open to capture a frame when the light panels 208-209 are on (the "lit" interval). As a result, color lit cameras 214-215 capture images of the performers' face illuminated by the light panels.

5

As used herein, grayscale cameras 204-205 may be referenced as "dark cameras" or "dark cams" because their shutters normally only when the light panels 208-209 are dark. Similarly, color cameras 214-215 may be referenced as "lit cameras" or "lit cams" because normally their shutters are 20 only open when the light panels 208-209 are lit. While grayscale and color cameras are used specifically for each lighting phase in one embodiment, either grayscale or color cameras can be used for either light phase in other embodiments.

In one embodiment, light panels 208-209 are flashed rapidly at 90 flashes per second (as driven by a 90 Hz square wave from Light Panel Sync signal 222), with the cameras 204-205 and 214-205 synchronized to them as previously described. At 90 flashes per second, the light panels 208-209 are flashing at a rate faster than can be perceived by the vast majority of humans, and as a result, the performer (as well as any observers of the motion capture session) perceive the room as being steadily illuminated and are unaware of the flashing, and the performer is able to proceed with the performance without distraction from the flashing light panels 208-209.

As described in detail in the co-pending applications, the images captured by cameras 204-205 and 214-215 are recorded by camera controllers 225 (coordinated by a centralized motion capture controller 206) and the images and images sequences so recorded are processed by data processing system 210. The images from the various grayscale dark cameras are processed so as to determine the geometry of the 3D surface of the face 207. Further processing by data processing system 210 can be used to map the color lit images captured onto the geometry of the surface of the face 207. Yet 45 further processing by the data processing system 210 can be used to track surface points on the face from frame-to-frame.

In one embodiment, each of the camera controllers 225 and central motion capture controller 206 is implemented using a separate computer system. Alternatively, the camera control- 50 lers and motion capture controller may be implemented as software executed on a single computer system or as any combination of hardware and software. In one embodiment, the camera controller computers 225 are rack-mounted computers, each using a 945GT Speedster-A4R motherboard 55 from MSI Computer Japan Co., Ltd. (C&K Bldg. 6F 1-17-6, Higashikanda, Chiyoda-ku, Tokyo 101-0031 Japan) with 2 Gbytes of random access memory (RAM) and a 2.16 GHz Intel Core Duo central processing unit from Intel Corporation, and a 300 GByte SATA hard disk from Western Digital, 60 Lake Forest Calif. The cameras 204-205 and 214-215 interface to the camera controller computers 225 via IEEE 1394 cables.

In another embodiment the central motion capture controller **206** also serves as the synchronization signal generator PC 65 **220**. In yet another embodiment the synchronization signal generator PCI card **224** is replaced by using the parallel port

output of the synchronization signal generator PC 220. In such an embodiment, each of the TTL-level outputs of the parallel port are controlled by an application running on synchronization signal generator PC 220, switching each TTL-level output to a high state or a low state in accordance with the desired signal timing. For example, bit 0 of the PC 220 parallel port is used to drive synchronization signal 221, bit 1 is used to drive signal 222, and bit 2 is used to drive signal 224. However, the underlying principles of the invention are not limited to any particular mechanism for generating the synchronization signals.

6

The synchronization between the light sources and the cameras employed in one embodiment of the invention is illustrated in FIG. 3. In this embodiment, the Light Panel and Dark Cam Sync signals 221 and 222 are in phase with each other, while the Lit Cam Sync Signal 223 is the inverse of signals 221/222. In one embodiment, the synchronization signals cycle between 0 to 5 Volts. In response to the synchronization signal 221 and 223, the shutters of the cameras 204-205 and 214-215, respectively, are periodically opened and closed as shown in FIG. 3. In response to sync signal 222, the light panels are periodically turned off and on, respectively as shown in FIG. 3. For example, on the falling edge 314 of sync signal 223 and on the rising edges 324 and 334 of sync signals 221 and 222, respectively, the lit camera 214-215 shutters are opened and the dark camera 204-215 shutters are closed and the light panels are illuminated as shown by rising edge 344. The shutters remain in their respective states and the light panels remain illuminated for time interval 301. Then, on the rising edge 312 of sync signal 223 and falling edges 322 and 332 of the sync signals 221 and 222, respectively, the lit camera 214-215 shutters are closed, the dark camera 204-215 shutters are opened and the light panels are 35 turned off as shown by falling edge 342. The shutters and light panels are left in this state for time interval 302. The process then repeats for each successive frame time interval 303.

As a result, during the first time interval 301, a normally-lit image is captured by the color lit cameras 214-215, and the phosphorescent makeup is illuminated (and charged) with light from the light panels 208-209. During the second time interval 302, the light is turned off and the grayscale dark cameras 204-205 capture an image of the glowing phosphorescent makeup on the performer. Because the light panels are off during the second time interval 302, the contrast between the phosphorescent makeup and any surfaces in the room without phosphorescent makeup is extremely high (i.e., the rest of the room is pitch black or at least quite dark, and as a result there is no significant light reflecting off of surfaces in the room, other than reflected light from the phosphorescent emissions), thereby improving the ability of the system to differentiate the various patterns applied to the performer's face. In addition, because the light panels are on half of the time, the performer will be able to see around the room during the performance, and also the phosphorescent makeup is constantly recharged. The frequency of the synchronization signals is 1/(time interval 303) and may be set at such a high rate that the performer will not even notice that the light panels are being turned on and off. For example, at a flashing rate of 90 Hz or above, virtually all humans are unable to perceive that a light is flashing and the light appears to be continuously illuminated. In psychophysical parlance, when a high frequency flashing light is perceived by humans to be continuously illuminated, it is said that "fusion" has been achieved. In one embodiment, the light panels are cycled at 120 Hz; in another embodiment, the light panels are cycled at 140 Hz, both frequencies far above the fusion threshold of any human.

,

However, the underlying principles of the invention are not limited to any particular frequency.

SURFACE CAPTURE OF SKIN USING PHOSPHORESCENT RANDOM PATTERNS

FIG. 4 shows images captured using the methods described above and the 3D surface and textured 3D surface reconstructed from them. Prior to capturing the images, a phosphorescent makeup was applied to a Caucasian model's face with 10 an exfoliating sponge. Luminescent zinc sulfide with a copper activator (ZnS:Cu) is the phosphor responsible for the makeup's phosphorescent properties. This particular formulation of luminescent Zinc Sulfide is approved by the FDA color additives regulation 21 CFR Part 73 for makeup preparations. 15 The particular brand is Fantasy F/XT Tube Makeup; Product #: FFX; Color Designation: GL; manufactured by Mehron Inc. of 100 Red Schoolhouse Rd. Chestnut Ridge, N.Y. 10977. The motion capture session that produced these images utilized 8 grayscale dark cameras (such as cameras 20 204-205) surrounding the model's face from a plurality of angles and 1 color lit camera (such as cameras 214-215) pointed at the model's face from an angle to provide the view seen in Lit Image 401. The grayscale cameras were model A311f from Basler AG, An der Strusbek 60-62, 22926 Ahr- 25 ensburg, Germany, and the color camera was a Basler model A311fc. The light panels 208-209 were flashed at a rate of 72 flashes per second.

Lit Image 401 shows an image of the performer captured by one of the color lit cameras 214-215 during lit interval 301, when the light panels 208-209 are on and the color lit camera 214-215 shutters are open. Note that the phosphorescent makeup is quite visible on the performer's face, particularly the lips.

Dark Image 402 shows an image of the performer captured 35 by one of the grayscale dark cameras 204-205 during dark interval 302, when the light panels 208-209 are off and the grayscale dark camera 204-205 shutters are open. Note that only random pattern of phosphorescent makeup is visible on the surfaces where it is applied. All other surfaces in the 40 image, including the hair, eyes, teeth, ears and neck of the performer are completely black.

3D Surface 403 shows a rendered image of the surface reconstructed from the Dark Images 402 from grayscale dark cameras 204-205 (in this example, 8 grayscale dark cameras 45 were used, each producing a single Dark Image 402 from a different angle) pointed at the model's face from a plurality of angles. One reconstruction process which may be used to create this image is detailed in co-pending application Apparatus and Method for Performing Motion Capture Using A 50 Random Pattern On Capture Surfaces, Ser. No. 11/255,854, Filed Oct. 20, 2005. Note that 3D Surface 403 was only reconstructed from surfaces where there was phosphorescent makeup applied. Also, the particular embodiment of the technique that was used to produce the 3D Surface 403 fills in 55 cavities in the 3D surface (e.g., the eyes and the mouth in this example) with a flat surface.

Textured 3D Surface 404 shows the Lit Image 401 used as a texture map and mapped onto 3D Surface 403 and rendered at an angle. Although Textured 3D Surface 404 is a computer-generated 3D image of the model's face, to the human eye it appears real enough that when it is rendered at an angle, such as it is in image 404, it creates the illusion that the model is turning her head and actually looking at an angle. Note that no phosphorescent makeup was applied to the model's eyes and 65 teeth, and the image of the eyes and teeth are mapped onto flat surfaces that fill those cavities in the 3D surface. Nonetheless,

8

the rest of the 3D surface is reconstructed so accurately, the resulting Textured 3D Surface **404** approaches photorealism. When this process is applied to create successive frames of Textured 3D Surfaces **404**, when the frames are played back in real-time, the level of realism is such that, to the untrained eye, the successive frames look like actual video of the model, even though it is a computer-generated 3D image of the model viewed from side angle.

Since the Textured 3D Surfaces 404 produces computergenerated 3D images, such computer-generated images can manipulated with far more flexibility than actual video captured of the model. With actual video it is often impractical (or impossible) to show the objects in the video from any camera angles other than the angle from which the video was shot. With computer-generated 3D, the image can be rendered as if it is viewed from any camera angle. With actual video it is generally necessary to use a green screen or blue screen to separate an object from its background (e.g. so that a TV meteorologist can be composited in front of a weather map), and then that green- or blue-screened object can only be presented from the point of view of the camera shooting the object. With the technique just described, no green/blue screen is necessary. Phosphorescent makeup, paint, or dye is applied to the areas desired to be captured (e.g. the face, body and clothes of the meteorologist) and then the entire background will be separated from the object. Further, the object can be presented from any camera angle. For example, the meteorologist can be shown from a straight-on shot, or from an side angle shot, but still composited in front of the weather

Further, a 3D generated image can be manipulated in 3D. For example, using standard 3D mesh manipulation tools (such as those in Maya, sold by Autodesk, Inc.) the nose can be shortened or lengthened, either for cosmetic reasons if the performer feels her nose would look better in a different size, or as a creature effect, to make the performer look like a fantasy character like Gollum of "Lord of the Rings." More extensive 3D manipulations could add wrinkles to the performers face to make her appear to be older, or smooth out wrinkles to make her look younger. The face could also be manipulated to change the performer's expression, for example, from a smile to a frown. Although some 2D manipulations are possible with conventional 2D video capture, they are generally limited to manipulations from the point of view of the camera. If the model turns her head during the video sequence, the 2D manipulations applied when the head is facing the camera would have to be changed when the head is turned. 3D manipulations do not need to be changed, regardless of which way the head is turned. As a result, the techniques described above for creating successive frames of Textured 3D Surface 404 in a video sequence make it possible to capture objects that appear to look like actual video, but nonetheless have the flexibility of manipulation as computergenerated 3D objects, offering enormous advantages in production of video, motion pictures, and also video games (where characters may be manipulated by the player in 3D).

Note that in FIG. 4 the phosphorescent makeup is visible on the model's face in Lit Image 401 and appears like a yellow powder has been spread on her face. It is particularly prominent on her lower lip, where the lip color is almost entirely changed from red to yellow. These discolorations appear in Textured 3D Surface 404, and they would be even more prominent on a dark-skinned model who is, for example, African in race. Many applications (e.g. creating a fantasy 3D character like Gollum) only require 3D Surface 403, and Textured 3D Surface 404 would only serve as a reference to the director of the motion capture session or as a reference to

9

3D animators manipulating the 3D Surface **403**. But in some applications, maintaining the actual skin color of the model's skin is important and the discolorations from the phosphorescent makeup are not desirable.

SURFACE CAPTURE USING PHOSPHORESCENT MAKEUP MIXED WITH BASE

FIG. 5 shows a similar set of images as FIG. 4, captured and created under the same conditions: with 8 grayscale dark cameras (such as 204-205), 1 color camera (such as 214-215), with the Lit Image 501 captured by the color lit camera during the time interval when the Light Array 208-9 is on, and the Dark Image 502 captured by one of the 8 grayscale dark cameras when the Light Array 208-9. 3D Surface 503 is reconstructed from the 8 Dark Images 502 from the 8 grayscale dark cameras, and Textured 3D Surface 504 is a rendering of the Lit Image 501 texture-mapped onto 3D Surface 503 (and unlike image 404, image 504 is rendered from a camera angle similar to the camera angle of the color lit camera that captured Lit Image 501).

However, there is a notable differences between the images of FIG. 5 and FIG. 4: The phosphorescent makeup that is noticeably visible in Lit Image 401 and Textured 3D Surface 404 is almost invisible in Lit Image 501 and Textured 3D Surface 504. The reason for this is that, rather than applying the phosphorescent makeup to the model in its pure form, as was done in the motion capture session of FIG. 4, in the embodiment illustrated in FIG. 5 the phosphorescent makeup was mixed with makeup base and was then applied to the model. The makeup base used was "Clean Makeup" in "Buff Beige" color manufactured by Cover Girl, and it was mixed with the same phosphorescent makeup used in the FIG. 4 shoot in a proportion of 80% phosphorescent makeup and 20% base makeup.

Note that mixing the phosphorescent makeup with makeup base does reduce the brightness of the phosphorescence during the Dark interval 302. Despite this, the phosphorescent brightness is still sufficient to produce Dark Image 502, and there is enough dynamic range in the dark images from the 8 grayscale dark cameras to reconstruct 3D Surface 503. As previously noted, some applications do not require an accurate capture of the skin color of the model, and in that case it is advantageous to not mix the phosphorescent makeup with base, and then get the benefit of higher phosphorescent brightness during the Dark interval 302 (e.g. higher brightness allows for a smaller aperture setting on the camera lens, which allows for larger depth of field). But some applications do require an accurate capture of the skin color of the model. For such applications, it is advantageous to mix the phosphorescent makeup with base (in a color suited for the model's skin tone) makeup, and work within the constraints of lower phosphorescent brightness. Also, there are applications where some phosphor visibility is acceptable, but not the level of visibility seen in Lit Image 401. For such applications, a middle ground can be found in terms of skin color accuracy and phosphorescent brightness by mixing a higher percentage of phosphorescent makeup relative to the base.

In another embodiment, luminescent zinc sulfide (ZnS:Cu) in its raw form is mixed with base makeup and applied to the model's face.

SURFACE CAPTURE OF FABRIC WITH PHOSPHORESCENT RANDOM PATTERNS

In another embodiment, the techniques described above are used to capture cloth. FIG. 6 shows a capture of a piece of

10

cloth (part of a silk pajama top) with the same phosphorescent makeup used in FIG. 4 sponged onto it. The capture was done under the exact same conditions with 8 grayscale dark cameras (such as 204-205) and 1 color lit camera (such as 214-215). The phosphorescent makeup can be seen slightly discoloring the surface of Lit Frame 601, during lit interval 301, but it can be seen phosphorescing brightly in Dark Frame 602, during dark interval 302. From the 8 cameras of Dark Frame 602, 3D Surface 603 is reconstructed using the same techniques used for reconstructing the 3D Surfaces 403 and 503. And, then Lit Image 601 is texture-mapped onto 3D Surface 603 to produce Textured 3D Surface 604.

FIG. 6 shows a single frame of captured cloth, one of hundreds of frames that were captured in a capture session while the cloth was moved, folded and unfolded. And in each frame, each area of the surface of the cloth was captured accurately, so long as at least 2 of the 8 grayscale cameras had a view of the area that was not overly oblique (e.g. the camera optical axis was within 30 degrees of the area's surface normal). In some frames, the cloth was contorted such that there were areas within deep folds in the cloth (obstructing the light from the light panels 208-209), and in some frames the cloth was curved such that there were areas that reflected back the light from the light panels 208-209 so as to create a highlight (i.e. the silk fabric was shiny). Such lighting conditions would make it difficult, if not impossible, to accurately capture the surface of the cloth using reflected light during lit interval 301 because shadow areas might be too dark for an accurate capture (e.g. below the noise floor of the camera sensor) and some highlights might be too bright for an accurate capture (e.g. oversaturating the sensor so that it reads the entire area as solid white). But, during the dark interval 302, such areas are readily captured accurately because the phosphorescent makeup emits light quite uniformly, whether deep in a fold or 35 on an external curve of the cloth.

Because the phosphor charges from any light incident upon it, including diffused or reflected light that is not directly from the light panels 208-209, even phosphor within folds gets charged (unless the folds are so tightly sealed no light can get into them, but in such cases it is unlikely that the cameras can see into the folds anyway). This illustrates a significant advantage of utilizing phosphorescent makeup (or paint or dye) for creating patterns on (or infused within) surfaces to be captured: the phosphor is emissive and is not subject to highlights and shadows, producing a highly uniform brightness level for the patterns seen by the grayscale dark cameras 204-205, that neither has areas too dark nor areas too bright.

Another advantage of dyeing or painting a surface with phosphorescent dye or paint, respectively, rather than applying phosphorescent makeup to the surface is that with dye or paint the phosphorescent pattern on the surface can be made permanent throughout a motion capture session. Makeup, by its nature, is designed to be removable, and a performer will normally remove phosphorescent makeup at the end of a day's motion capture shoot, and if not, almost certainly before going to bed. Frequently, motion capture sessions extend across several days, and as a result, normally a fresh application of phosphorescent makeup is applied to the performer each day prior to the motion capture shoot. Typically, each fresh application of phosphorescent makeup will result in a different random pattern. One of the techniques disclosed in co-pending applications is the tracking of vertices ("vertex tracking") of the captured surfaces. Vertex tracking is accomplished by correlating random patterns from one captured frame to the next. In this way, a point on the captured surface can be followed from frame-to-frame. And, so long as the random patterns on the surface stay the same, a point on a

11 12

captured surface even can be tracked from shot-to-shot. In the case of random patterns made using phosphorescent makeup, it is typically practical to leave the makeup largely undisturbed (although it is possible for some areas to get smudged, the bulk of the makeup usually stays unchanged until 5 removed) during one day's-worth of motion capture shooting, but as previously mentioned it normally is removed at the end of the day. So, it is typically impractical to maintain the same phosphorescent random pattern (and with that, vertex tracking based on tracking a particular random pattern) from 10 day-to-day. But when it comes to non-skin objects like fabric, phosphorescent dye or paint can be used to create a random pattern. Because dye and paint are essentially permanent, random patterns will not get smudged during the motion capture session, and the same random patterns will be 15 unchanged from day-to-day. This allows vertex tracking of dyed or painted objects with random patterns to track the same random pattern through the duration of a multi-day motion capture session (or in fact, across multiple motion capture sessions spread over long gaps in time if desired).

Skin is also subject to shadows and highlights when viewed with reflected light. There are many concave areas (e.g., eye sockets) that often are shadowed. Also, skin may be shiny and cause highlights, and even if the skin is covered with makeup to reduce its shininess, performers may sweat during a physical performance, resulting in shininess from sweaty skin. Phosphorescent makeup emits uniformly both from shiny and matte skin areas, and both from convex areas of the body (e.g. the nose bridge) and concavities (e.g. eye sockets). Sweat has little impact on the emission brightness of phosphorescent makeup. Phosphorescent makeup also charges while folded up in areas of the body that fold up (e.g. eyelids) and when it unfolds (e.g. when the performer blinks) the phosphorescent pattern emits light uniformly.

Returning back to FIG. 6, note that the phosphorescent 35 makeup can be seen on the surface of the cloth in Lit Frame 601 and in Textured 3D Surface 604. Also, while this is not apparent in the images, although it may be when the cloth is in motion, the phosphorescent makeup has a small impact on the pliability of the silk fabric. In another embodiment, 40 instead of using phosphorescent makeup (which of course is formulated for skin application) phosphorescent dye is used to create phosphorescent patterns on cloth. Phosphorescent dyes are available from a number of manufacturers. For example, it is common to find t-shirts at novelty shops that 45 have glow-in-the-dark patterns printed onto them with phosphorescent dyes. The dyes can also can be formulated manually by mixing phosphorescent powder (e.g. ZnS:Cu) with off-the-shelf clothing dyes, appropriate for the given type of fabric. For example, Dharma Trading Company with a store 50 at 1604 Fourth Street, San Rafael, Calif. stocks a large number of dyes, each dye designed for certain fabrics types (e.g. Dharma Fiber Reactive Procion Dye is for all natural fibers, Sennelier Tinfix Design—French Silk Dye is for silk and wool), as well as the base chemicals to formulate such dyes. 55 When phosphorescent powder is used as the pigment in such formulations, then a dye appropriate for a given fabric type is produced and the fabric can be dyed with phosphorescent pattern while minimizing the impact on the fabric's pliability.

SURFACE CAPTURE OF STOP-MOTION ANIMATION CHARACTERS WITH PHOSPHORESCENT RANDOM PATTERNS

In another embodiment, phosphor is embedded in silicone 65 or a moldable material such as modeling clay in characters, props and background sets used for stop-motion animation.

Stop-motion animation is a technique used in animated motion pictures and in motion picture special effects. An exemplary prior art stop-motion animation stage is illustrated in FIG. 7a. Recent stop-motion animations are feature films Wallace & Gromit in The Curse of the Were-Rabbit (Academy Award-winning best animated feature film released in 2005) (hereafter referenced as WG) and Corpse Bride (Academy Award-nominated best animated feature film released in 2005) (hereafter referred to as CB). Various techniques are used in stop-motion animation. In WG the characters 702-703 are typically made of modeling clay, often wrapped around a metal armature to give the character structural stability. In CB the characters 702-703 are created from puppets with mechanical armatures which are then covered with molded silicone (e.g. for a face), or some other material (e.g. for clothing). The characters 702-703 in both films are placed in complex sets 701 (e.g. city streets, natural settings, or in buildings), the sets are lit with lights such as 708-709, a camera such as 705 is placed in position, and then one frame 20 is shot by the camera 705 (in modern stop-motion animation. typically, a digital camera). Then the various characters (e.g. the man with a leash 702 and the dog 703) that are in motion in the scene are moved very slightly. In the case of WB, often the movement is achieved by deforming the clay (and potentially the armature underneath it) or by changing a detailed part of a character 702-703 (e.g. for each frame swapping in a different mouth shape on a character 702-703 as it speaks). In the case of CB, often motion is achieved by adjusting the character puppet 702-703 armature (e.g. a screwdriver inserted in a character puppet's 702-703 ear might turn a screw that actuates the armature causing the character's 702-703 mouth to open). Also, if the camera 705 is moving in the scene, then the camera 705 is placed on a mechanism that allows it to be moved, and it is moved slightly each frame time. After all the characters 702-703 and the camera 705 in a scene have been moved, another frame is captured by the camera 705. This painstaking process continues frame-byframe until the shot is completed.

There are many difficulties with the stop-motion animation process that both limit the expressive freedom of the animators, limit the degree of realism in motion, and add to the time and cost of production. One of these difficulties is animating many complex characters 702-703 within a complex set 701 on a stop-motion animation stage such as that shown in FIG. 7a. The animators often need to physically climb into the sets, taking meticulous care not to bump anything inadvertently, and then make adjustments to character 702-703 expressions. often with sub-millimeter precision. When characters 702-703 are very close to each other, it gets even more difficult. Also, sometimes characters 702-703 need to be placed in a pose where a character 702-703 can easily fall over (e.g. a character 702-703 is doing a hand stand or a character 702-703 is flying). In these cases the character 702-703 requires some support structure that may be seen by the camera 705, and if so, needs to be erased from the shot in post-production.

In one embodiment illustrated by the stop-motion animation stage in FIG. 7b, phosphorescent phosphor (e.g. zinc sulfide) in powder form can be mixed (e.g. kneaded) into modeling clay resulting in the clay surface phosphorescing in darkness with a random pattern. Zinc sulfide powder also can be mixed into-liquid silicone before the silicone is poured into a mold, and then when the silicone dries and solidifies, it has zinc sulfide distributed throughout. In another embodiment, zinc sulfide powder can be spread onto the inner surface of a mold and then liquid silicone can be poured into the mold to solidify (with the zinc sulfide embedded on the surface). In yet another embodiment, zinc sulfide is mixed in with paint

13

that is applied to the surface of either modeling clay or silicone. In yet another embodiment, zinc sulfide is dyed into fabric worn by characters 702-703 or mixed into paint applied to props or sets 701. In all of these embodiments the resulting effect is that the surfaces of the characters 702-703, props and sets 701 in the scene phosphoresce in darkness with random surface patterns.

At low concentrations of zinc sulfide in the various embodiments described above, the zinc sulfide is not significantly visible under the desired scene illumination when light 10 panels 208-208 are on. The exact percentage of zinc sulfide depends on the particular material it is mixed with or applied to, the color of the material, and the lighting circumstances of the character 702-703, prop or set 701. But, experimentally, the zinc sulfide concentration can be continually reduced 15 until it is no longer visually noticeable in lighting situations where the character 702-703, prop or set 701 is to be used. This may result in a very low concentration of zinc sulfide and very low phosphorescent emission. Although this normally would be a significant concern with live action frame capture 20 of dim phosphorescent patterns, with stop-motion animation, the dark frame capture shutter time can be extremely long (e.g. 1 second or more) because by definition, the scene is not moving. With a long shutter time, even very dim phosphorescent emission can be captured accurately.

Once the characters 702-703, props and the set 701 in the scene are thus prepared, they look almost exactly as they otherwise would look under the desired scene illumination when light panels 208-209 are on, but they phosphoresce in random patterns when the light panels 208-209 are turned off. 30 At this point all of the characters 702-703, props and the set 701 of the stop-motion animation can now be captured in 3D using a configuration like that illustrated in FIGS. 2a and 2b and described in the co-pending applications. (FIGS. 7b-7e illustrate stop-motion animation stages with light panels 208-35 209, dark cameras 204-205 and lit cameras 214-215 from FIGS. 2a and 2b surrounding the stop-motion animation characters 702-703 and set 701. For clarity, the connections to devices 208-209, 204-205 and 214-215 have been omitted from FIGS. 7b-7e, but in they would be hooked up as illus- 40 trated in FIGS. 2a and 2b.) Dark cameras 204-205 and lit cameras 214-215 are placed around the scene illustrated in FIG. 7b so as to capture whatever surfaces will be needed to be seen in the final animation. And then, rather than rapidly switching sync signals 221-223 at a high capture frame rate 45 (e.g. 90 fps), the sync signals are switched very slowly, and in fact may be switched by hand.

In one embodiment, the light panels 208-209 are left on while the animators adjust the positions of the characters 702-703, props or any changes to the set 701. Note that the 50 light panels 208-209 could be any illumination source, including incandescent lamps, because there is no requirement in stop-motion animation for rapidly turning on and off the illumination source. Once the characters 702-703, props and set 701 are in position for the next frame, lit cam sync 55 signal 223 is triggered (by a falling edge transition in the presently preferred embodiment) and all of the lit cameras 214-215 capture a frame for a specified duration based on the desired exposure time for the captured frames. In other embodiments, different cameras may have different exposure 60 times based on individual exposure requirements.

Next, light panels 208-209 are turned off (either by sync signal 222 or by hand) and the lamps are allowed to decay until the scene is in complete darkness (e.g. incandescent lamps may take many seconds to decay). Then, dark cam sync 65 signal 221 is triggered (by a falling edge transition in the presently preferred embodiment) and all of the dark cameras

14

208-209 capture a frame of the random phosphorescent patterns for a specified duration based on the desired exposure time for the captured frames. Once again, different cameras have different exposure times based on individual exposure requirements. As previously mentioned, in the case of very dim phosphorescent emissions, the exposure time may be quite long (e.g., a second or more). The upper limit of exposure time is primarily limited by the noise accumulation of the camera sensors. The captured dark frames are processed by data processing system 210 to produce 3D surface 207 and then to map the images captured by the lit cameras 214-215 onto the 3D surface 207 to create textured 3D surface 217. Then, the light panels, 208-9 are turned back on again, the characters 702-703, props and set 701 are moved again, and the process described in this paragraph is repeated until the entire shot is completed.

The resulting output is the successive frames of textured 3D surfaces of all of the characters 702-703, props and set 701 with areas of surfaces embedded or painted with phosphor that are in view of at least 2 dark cameras 204-205 at a non-oblique angle (e.g., <30 degrees from the optical axis of a camera). When these successive frames are played back at the desired frame rate (e.g., 24 fps), the animated scene will come to life, but unlike frames of a conventional stop-motion animation, the animation will be able to be viewed from any camera position, just by rendering the textured 3D surfaces from a chosen camera position. Also, if the camera position of the final animation is to be in motion during a frame sequence (e.g. if a camera is following a character 702-703), it is not necessary to have a physical camera moving in the scene. Rather, for each successive frame, the textured 3D surfaces of the scene are simply rendered from the desired camera position for that frame, using a 3D modeling/animation application software such as Maya (from Autodesk, Inc.).

In another embodiment, illustrated in FIGS. 7c-7e, some or all of the different characters 702-703, props, and/or sets 701 within a single stop-motion animation scene are shot separately, each in a configuration such as FIGS. 2a and 2b. For example, if a scene had man with leash 702 and his dog 703 walking down a city street set 701, the city street set 701, the man with leash 702, and the dog 703 would be shot individually, each with separate motion capture systems as illustrated in FIG. 1c (for city street set 701, FIG. 7d (for man with leash 702) and FIG. 7e (for dog 703)a. The stop-motion animation of the 2 characters 702-703 and 1 set 701 would each then be separately captured as individual textured 3D surfaces 217, in the manner described above. Then, with a 3D modeling and/ or animation application software the 2 characters 702-703 and 1 set 701 would be rendered together into a 3D scene. In one embodiment, the light panel 208-209 lighting the characters 702-703 and the set 701 could be configured to be the same, so the man with leash 702 and the dog 703 appear to be illuminated in the same environment as the set 701. In another embodiment, flat lighting (i.e. uniform lighting to minimize shadows and highlights) is used, and then lighting (including shadows and highlights) is simulated by the 3D modeling/ animation application software. Through the 3D modeling/ animation application software the animators will be able to see how the characters 702-703 look relative to each other and the set 701, and will also be able to look at the characters 702-703 and set 701 from any camera angle they wish, without having to move any of the physical cameras 204-205 or 214-215 doing the capture.

This approach provides significant advantages to stop-motion animation. The following are some of the advantages of this approach: (a) individual characters **702-703** may be manipulated individually without worrying about the anima-

15

tor bumping into another character 702-703 or the characters 702-703 bumping into each other, (b) the camera position of the rendered frames may be chosen arbitrarily, including having the camera position move in successive frames, (c) the rendered camera position can be one where it would not be 5 physically possible to locate a camera 705 in a conventional stop-motion configuration (e.g. directly between 2 characters 702-703 that are close together, where there is no room for a camera 705), (d) the lighting, including highlights and shadows can be controlled arbitrarily, including creating lighting 10 situations that are not physically possible to realize (e.g. making a character glow), (e) special effects can be applied to the characters 702-703 (e.g. a ghost character 702-703 can be made translucent when it is rendered into the scene), (f) a character 702-703 can remain in a physically stable position 15 on the ground while in the scene it is not (e.g. a character 702-703 can be captured in an upright position, while it is rendered into the scene upside down in a hand stand, or rendered into the scene flying above the ground), (g) parts of the character 702-703 can be held up by supports that do not 20 have phosphor on them, and as such will not be captured (and will not have to be removed from the shot later in postproduction), (h) detail elements of a character 702-703, like mouth positions when the character 702-703 is speaking, can be rendered in by the 3D modeling/animation application, so 25 they do not have be attached and then removed from the character 702-703 during the animation, (i) characters 702-703 can be rendered into computer-generated 3D scenes (e.g. the man with leash 702 and dog 703 can be animated as clay animations, but the city street set 701 can be a computer- 30 generated scene), (j) 3D motion blur can be applied to the objects as they move (or as the rendered camera position moves), resulting in a smoother perception of motion to the animation, and also making possible faster motion without the perception of jitter.

ADDITIONAL PHOSPHORESCENT PHOSPHORS

In another embodiment, different phosphors other than 40 ZnS:Cu are used as pigments with dyes for fabrics or other non-skin objects. ZnS:Cu is the preferred phosphor to use for skin applications because it is FDA-approved as a cosmetic pigment. But a large variety of other phosphors exist that, while not approved for use on the skin, are in some cases 45 approved for use within materials handled by humans. One such phosphor is SrAl₂O₄:Eu²⁺,Dy³⁺. Another is SrAl₂O₄: Eu²⁺. Both phosphors have a much longer afterglow than ZnS:Cu for a given excitation.

OPTIMIZING PHOSPHORESCENT EMISSION

Many phosphors that phosphoresce in visible light spectra are charged more efficiently by ultraviolet light than by visible light. This can be seen in chart **800** of FIG. **8** which show approximate excitation and emission curves of ZnS:Cu (which we shall refer to hereafter as "zinc sulfide") and various light sources. In the case of zinc sulfide, its excitation curve **811** spans from about 230 nm to 480 nm, with its peak at around 360 nm. Once excited by energy in this range, its phosphorescence curve **812** spans from about 420 nm to 650 nm, producing a greenish glow. The zinc sulfide phosphorescence brightness **812** is directly proportional to the excitation energy **811** absorbed by the zinc sulfide. As can be seen by excitation curve **811**, zinc sulfide is excited with varying degrees of efficiency depending on wavelength. For example, at a given brightness from an excitation source (i.e. in the case

16

of the presently preferred embodiment, light energy from light panels 208-209) zinc sulfide will absorb only 30% of the energy at 450 nm (blue light) that it will absorb at 360 nm (UVA light, commonly called "black light"). Since it is desirable to get the maximum phosphorescent emission 812 from the zinc sulfide (e.g. brighter phosphorescence will allow for smaller lens apertures and longer depth of field), clearly it is advantageous to excite the zinc sulfide with as much energy as possible. The light panels 208-209 can only produce up to a certain level of light output before the light becomes uncomfortable for the performers. So, to maximize the phosphorescent emission output of the zinc sulfide, ideally the light panels 208-209 should output light at wavelengths that are the most efficient for exciting zinc sulfide.

Other phosphors that may be used for non-skin phosphorescent use (e.g. for dyeing fabrics) also are excited best by ultraviolet light. For example, SrAl₂O₄:Eu²⁺,Dy³⁺ and SrAl₂O₄:Eu²⁺ are both excited more efficiently with ultraviolet light than visible light, and in particular, are excited quite efficiently by UVA (black light).

As can be seen in FIG. 3, a requirement for a light source used for the light panels 208-209 is that the light source can transition from completely dark to fully lit very quickly (e.g. on the order of a millisecond or less) and from fully lit to dark very quickly (e.g. also on the order of a millisecond or less). Most LEDs fulfill this requirement quite well, typically turning on an off on the order of microseconds. Unfortunately, though, current LEDs present a number of issues for use in general lighting. For one thing, LEDs currently available have a maximum light output of approximately 35 W. The BL-43F0-0305 from Lamina Ceramics, 120 Hancock Lane, Westampton, N.J. 08060 is one such RGB LED unit. For another, currently LEDs have special power supply requirements (in the case of the BL-43F0-0305, different voltage 35 supplies are need for different color LEDs in the unit). In addition, current LEDs require very large and heavy heatsinks and produce a great deal of heat. Each of these issues results in making LEDs expensive and somewhat unwieldy for lighting an entire motion capture stage for a performance. For example, if 3500 Watts were needed to light a stage, 100 35 W LED units would be needed.

But, in addition to these disadvantages, the only very bright LEDs currently available are white or RGB LEDs. In the case of both types of LEDs, the wavelengths of light emitted by the LED does not overlap with wavelengths where the zinc sulfide is efficiently excited. For example, in FIG. 8 the emission curve 823 of the blue LEDs in the BL-43F0-0305 LED unit is centered around 460 nm. It only overlaps with the tail end of the zinc sulfide excitation curve 811 (and the Red and Green 50 LEDs don't excite the zinc sulfide significantly at all). So, even if the blue LEDs are very bright (to the point where they are as bright as is comfortable to the performer), only a small percentage of that light energy will excite the zinc sulfide, resulting in a relatively dim phosphorescence. Violet and UVA ("black light") LEDs do exist, which would excite the zinc sulfide more efficiently; but they only currently are available at very low power levels, on the order of 0.1 Watts. To achieve 3500 Watts of illumination would require 35,000 such 0.1 Watt LEDs, which would be quite impractical and

FLUORESCENT LAMPS AS A FLASHING ILLUMINATION SOURCE

Other lighting sources exist that output light at wavelengths that are more efficiently absorbed by zinc sulfide. For example, fluorescent lamps (e.g. 482-S9 from Kino-Flo, Inc.

17

2840 North Hollywood Way, Burbank, Calif. 91505) are available that emit UVA (black light) centered around 350 nm with an emission curve similar to 821, and Blue/violet fluorescent lamps (e.g. 482-S10-S from Kino-Flo) exist that emit bluish/violet light centered around 420 nm with an emission 5 curve similar to 822. The emission curves 821 and 822 are much closer to the peak of the zinc sulfide excitation curve 811, and as a result the light energy is far more efficiently absorbed, resulting in a much higher phosphorescent emission 812 for a given excitation brightness. Such fluorescent 10 bulbs are quite inexpensive (typically \$15/bulb for a 48" bulb), produce very little heat, and are very light weight. They are also available in high wattages. A typical 4-bulb fluorescent fixture produces 160 Watts or more. Also, theatrical fixtures are readily available to hold such bulbs in place as 15 staging lights. (Note that UVB and UVC fluorescent bulbs are also available, but UVB and UVC exposure is known to present health hazards under certain conditions, and as such would not be appropriate to use with human or animal performers without suitable safety precautions.)

The primary issue with using fluorescent lamps is that they are not designed to switch on and off quickly. In fact, ballasts (the circuits that ignite and power fluorescent lamps) typically turn the lamps on very slowly, and it is common knowledge that fluorescent lamps may take a second or two until they are 25 fully illuminated.

FIG. 9 shows a diagrammatic view of a prior art fluorescent lamp. The elements of the lamp are contained within a sealed glass bulb 910 which, in this example, is in the shape of a cylinder (commonly referred to as a "tube"). The bulb contains an inert gas 940, typically argon, and a small amount of mercury 930. The inner surface of the bulb is coated with a phosphor 920. The lamp has 2 electrodes 905-906, each of which is coupled to a ballast through connectors 901-904. When a large voltage is applied across the electrodes 901- 35 904, some of the mercury in the tube changes from a liquid to a gas, creating mercury vapor, which, under the right electrical circumstances, emits ultraviolet light. The ultraviolet light excites the phosphor coating the inner surface of the bulb. The phosphor then fluoresces light at a higher wavelength than the 40 excitation wavelength. A wide range of phosphors are available for fluorescent lamps with different wavelengths. For example, phosphors that are emissive at UVA wavelengths and all visible light wavelengths are readily available off-theshelf from many suppliers.

Standard fluorescent ballasts are not designed to switch fluorescent lamps on and off quickly, but it is possible to modify an existing ballast so that it does. FIG. 10 is a circuit diagram of a prior art 27 Watt fluorescent lamp ballast 1002 modified with an added sync control circuit 1001 of the 50 present invention.

For the moment, consider only the prior art ballast circuit 1002 of FIG. 10 without the modification 1001. Prior art ballast 1002 operates in the following manner: A voltage doubler circuit converts 120 VAC from the power line into 55 300 volts DC. The voltage is connected to a half bridge oscillator/driver circuit, which uses two NPN power transistors 1004-1005. The half bridge driver, in conjunction with a multi-winding transformer, forms an oscillator. Two of the transformer windings provide high drive current to the two 60 power transistors 1004-1005. A third winding of the transformer is in line with a resonant circuit, to provide the needed feedback to maintain oscillation. The half bridge driver generates a square-shaped waveform, which swings from +300 volts during one half cycle, to zero volts for the next half 65 cycle. The square wave signal is connected to an "LC" (i.e. inductor-capacitor) series resonant circuit. The frequency of

the circuit is determined by the inductance Lres and the capacitance Cres. The fluorescent lamp 1003 is connected across the resonant capacitor. The voltage induced across the resonant capacitor from the driver circuit provides the needed high voltage AC to power the fluorescent lamp 1003. To kick the circuit into oscillation, the base of the power transistor 1005 is connected to a simple relaxation oscillator circuit. Current drawn from the 300 v supply is routed through a resistor and charges up a 0.1 uF capacitor. When the voltage across the capacitor reaches about 20 volts, a DIAC (a bilateral trigger diode) quickly switches and supplies power transistor 1005 with a current spike. This spike kicks the circuit into oscillation.

18

Synchronization control circuit 1001 is added to modify the prior art ballast circuit 1002 described in the previous paragraph to allow rapid on-and-off control of the fluorescent lamp 1003 with a sync signal. In the illustrated embodiment in FIG. 10, a sync signal, such as sync signal 222 from FIG. 2, is electrically coupled to the SYNC+ input. SYNC- is 20 coupled to ground. Opto-isolator NEC PS2501-1 isolates the SYNC+ and SYNC- inputs from the high voltages in the circuit. The opto-isolator integrated circuit consists of a light emitting diode (LED) and a phototransistor. The voltage differential between SYNC+ and SYNC- when the sync signal coupled to SYNC+ is at a high level (e.g. ≥ 2.0 V) causes the LED in the opto-isolator to illuminate and turn on the phototransistor in the opto-isolator. When this phototransistor is turned on, voltage is routed to the gate of an n-channel MOS-FET Q1 (Zetex Semiconductor ZVN4106F DMOS FET). MOSFET Q1 functions as a low resistance switch, shorting out the base-emitter voltage of power transistor 1005 to disrupt the oscillator, and turn off fluorescent lamp 1003. To turn the fluorescent lamp back on, the sync signal (such as 222) is brought to a low level (e.g. <0.8V), causing the LED in the opto-isolator to turn off, which turns off the opto-isolator phototransistor, which turns off MOSFET Q1 so it no longer shorts out the base-emitter voltage of power transistor 1005. This allows the kick start circuit to initialize ballast oscillation, and the fluorescent lamp 1003 illuminates.

This process repeats as the sync signal coupled to SYNC+ oscillates between high and low level. The synch control circuit 1001 combined with prior art ballast 1002 will switch fluorescent lamp 1003 on and off reliably, well in excess of 120 flashes per second. It should be noted that the underlying principles of the invention are not limited to the specific set of circuits illustrated in FIG. 10.

FIG. 11 shows the light output of fluorescent lamp 1003 when synch control circuit 1001 is coupled to prior art ballast 1002 and a sync signal 222 is coupled to circuit 1001 as described in the previous paragraph. Traces 1110 and 1120 are oscilloscope traces of the output of a photodiode placed on the center of the bulb of a fluorescent lamp using the prior art ballast circuit 1002 modified with the sync control circuit 1001 of the present invention. The vertical axis indicates the brightness of lamp 1003 and the horizontal axis is time. Trace 1110 (with 2 milliseconds/division) shows the light output of fluorescent lamp 1003 when sync signal 222 is producing a 60 Hz square wave. Trace 1120 (with the oscilloscope set to 1 millisecond/division and the vertical brightness scale reduced by 50%) shows the light output of lamp 1003 under the same test conditions except now sync signal 222 is producing a 250 Hz square wave. Note that the peak 1121 and minimum 1122 (when lamp 1003 is off and is almost completely dark) are still both relatively flat, even at a much higher switching frequency. Thus, the sync control circuit 1001 modification to prior art ballast 1002 produces dramatically different light output than the unmodified ballast 1002, and makes it pos-

sible to achieve on and off switching of fluorescent lamps at high frequencies as required by the motion capture system illustrated in FIG. 2 with timing similar to that of FIG. 3.

19

Although the modified circuit shown in FIG. 10 will switch a fluorescent lamp 1003 on and off rapidly enough for the requirements of a motion capture system such as that illustrated in FIG. 2, there are certain properties of fluorescent lamps that may be modified for use in a practical motion capture system.

FIG. 12 illustrates one of these properties. Traces 1210 and 1220 are the oscilloscope traces of the light output of a General Electric Gro and Sho fluorescent lamp 1003 placed in circuit 1002 modified by circuit 1001, using a photodiode placed on the center of the bulb. Trace 1210 shows the light output at 1 millisecond/division, and Trace 1220 shows the light output at 20 microseconds/division. The portion of the waveform shown in Trace 1220 is roughly the same as the dashed line area 1213 of Trace 1210. Sync signal 222 is coupled to circuit 1002 as described previously and is pro- 20 ducing a square wave at 250 Hz. Peak level 1211 shows the light output when lamp 1003 is on and minimum 1212 shows the light output when lamp 1003 is off. While Trace 1210 shows the peak level 1211 and minimum 1212 as fairly flat, upon closer inspection with Trace 1220, it can be seen that when the lamp 1003 is turned off, it does not transition from fully on to completely off instantly. Rather, there is a decay curve of approximately 200 microseconds (0.2 milliseconds) in duration. This is apparently due to the decay curve of the 30 phosphor coating the inside of the fluorescent bulb (i.e. when the lamp 1003 is turned off, the phosphor continues to fluoresce for a brief period of time). So, when sync signal 222 turns off the modified ballast 1001-1002, unlike LED lights which typically switch off within a microsecond, fluorescent 35 lamps take a short interval of time until they decay and become dark.

There exists a wide range of decay periods for different brands and types of fluorescent lamps, from as short as 200 microseconds, to as long as over a millisecond. To address this property of fluorescent lamps, one embodiment of the invention adjusts signals 221-223. This embodiment will be discussed shortly.

Another property of fluorescent lamps that impacts their 45 usability with a motion capture system such as that illustrated in FIG. 2 is that the electrodes within the bulb are effectively incandescent filaments that glow when they carry current through them, and like incandescent filaments, they continue to glow for a long time (often a second or more) after current 50 is removed from them. So, even if they are switched on and off rapidly (e.g. at 90 Hz) by sync signal 222 using ballast 1002 modified by circuit 1001, they continue to glow for the entire dark interval 302. Although the light emitted from the fluorescent bulb from the glowing electrodes is very dim relative 55 to the fully illuminated fluorescent bulb, it is still is a significant amount of light, and when many fluorescent bulbs are in use at once, together the electrodes add up to a significant amount of light contamination during the dark interval 302, where it is advantageous for the room to be as dark as pos- 60

FIG. 13 illustrates one embodiment of the invention which addresses this problem. Prior art fluorescent lamp 1350 is shown in a state 10 milliseconds after the lamp as been shut off. The mercury vapor within the lamp is no longer emitting 65 ultraviolet light and the phosphor lining the inner surface of the bulb is no longer emitting a significant amount of light.

20

But the electrodes 1351-1352 are still glowing because they are still hot. This electrode glowing results in illuminated regions 1361-1362 near the ends of the bulb of fluorescent lamp 1350.

Fluorescent lamp 1370 is a lamp in the same state as prior art lamp 1350, 10 milliseconds after the bulb 1370 has been shut off, with its electrodes 1371-1372 still glowing and producing illuminated regions 1381-1382 near the ends of the bulb of fluorescent lamp 1370, but unlike prior art lamp 1350, wrapped around the ends of lamp 1370 is opaque tape 1391 and 1392 (shown as see-through with slanted lines for the sake of illustration). In the presently preferred embodiment black gaffers' tape is used, such as 4" P-665 from Permacel, A Nitto Denko Company, US Highway No. 1, P.O. Box 671, New Brunswick, N.J. 08903. The opaque tape 1391-1392 serves to block almost all of the light from glowing electrodes 1371-1372 while blocking only a small amount of the overall light output of the fluorescent lamp when the lamp is on during lit interval 301. This allows the fluorescent lamp to become much darker during dark interval 302 when being flashed on and off at a high rate (e.g. 90 Hz). Other techniques can be used to block the light from the glowing electrodes, including other types of opaque tape, painting the ends of the bulb with an opaque paint, or using an opaque material (e.g. sheets of black metal) on the light fixtures holding the fluorescent lamps so as to block the light emission from the parts of the fluorescent lamps containing electrodes.

Returning now to the light decay property of fluorescent lamps illustrated in FIG. 12, if fluorescent lamps are used for light panels 208-209, the synchronization signal timing shown in FIG. 3 will not produce optimal results because when Light Panel sync signal 222 drops to a low level on edge 332, the fluorescent light panels 208-209 will take time to become completely dark (i.e. edge 342 will gradually drop to dark level). If the Dark Cam Sync Signal triggers the gray-scale cameras 204-205 to open their shutters at the same time as edge 322, the grayscale camera will capture some of the scene lit by the afterglow of light panels 208-209 during its decay interval. Clearly, FIG. 3's timing signals and light output behavior is more suited for light panels 208-209 using a lighting source like LEDs that have a much faster decay than fluorescent lamps.

SYNCHRONIZATION TIMING FOR FLUORESCENT LAMPS

FIG. 14 shows timing signals which are better suited for use with fluorescent lamps and the resulting light panel 208-209 behavior (note that the duration of the decay curve 1442 is exaggerated in this and subsequent timing diagrams for illustrative purposes). The rising edge 1434 of sync signal 222 is roughly coincident with rising edge 1414 of lit cam sync signal 223 (which opens the lit camera 214-215 shutters) and with falling edge 1424 of dark cam sync signal 223 (which closes the dark camera 204-205 shutters). It also causes the fluorescent lamps in the light panels 208-209 to illuminate quickly. During lit time interval 1401, the lit cameras 214-215 capture a color image illuminated by the fluorescent lamps, which are emitting relatively steady light as shown by light output level 1443.

At the end of lit time interval 1401, the falling edge 1432 of sync signal 222 turns off light panels 208-209 and is roughly coincident with the rising edge 1412 of lit cam sync signal 223, which closes the shutters of the lit cameras 214-215. Note, however, that the light output of the light panels 208-209 does not drop from lit to dark immediately, but rather slowly drops to dark as the fluorescent lamp phosphor decays

21

as shown by edge 1442. When the light level of the fluorescent lamps finally reaches dark level 1441, dark cam sync signal 221 is dropped from high to low as shown by edge 1422, and this opens the shutters of dark cameras 204-205. This way the dark cameras 204-205 only capture the emissions from the phosphorescent makeup, paint or dye, and do not capture the reflection of light from any objects illuminated by the fluorescent lamps during the decay interval 1442. So, in this embodiment the dark interval 1402 is shorter than the lit interval 1401, and the dark camera 204-205 shutters are open for a shorter period of time than the lit camera 214-205 shutters.

Another embodiment is illustrated in FIG. 15 where the dark interval 1502 is longer than the lit interval 1501. The advantage of this embodiment is it allows for a longer shutter time for the dark cameras 204-205. In this embodiment, light panel sync signal 222 falling edge 1532 occurs earlier which causes the light panels 208-209 to turn off. Lit cam sync signal 223 rising edge 1512 occurs roughly coincident with falling edge 1532 and closes the shutters on the lit cameras 214-5. The light output from the light panel 208-209 fluorescent lamps begins to decay as shown by edge 1542 and finally reaches dark level 1541. At this point dark cam sync signal 221 is transitions to a low state on edge 1522, and the dark cameras 204-205 open their shutters and capture the phosphorescent emissions.

Note that in the embodiments shown in both FIGS. 14 and 15 the lit camera 214-215 shutters were only open while the light output of the light panel 208-209 fluorescent lamps was at maximum. In another embodiment, the lit camera 214-215 shutters can be open during the entire time the fluorescent lamps are emitting any light, so as to maximize the amount of light captured. In this situation, however, the phosphorescent makeup, paint or dye in the scene will become more prominent relative to the non-phosphorescent areas in the scene because the phosphorescent areas will continue to emit light fairly steadily during the fluorescent lamp decay while the non-phosphorescent areas will steadily get darker. The lit cameras 214-215 will integrate this light during the entire time their shutters are open.

In yet another embodiment the lit cameras 214-215 leave their shutters open for some or all of the dark time interval 1502. In this case, the phosphorescent areas in the scene will appear very prominently relative to the non-phosphorescent areas since the lit cameras 214-215 will integrate the light during the dark time interval 1502 with the light from the lit time interval 1501.

Because fluorescent lamps are generally not sold with specifications detailing their phosphor decay characteristics, 50 it is necessary to determine the decay characteristics of fluorescent lamps experimentally. This can be readily done by adjusting the falling edge 1522 of sync signal 221 relative to the falling edge 1532 of sync signal 222, and then observing the output of the dark cameras 204-205. For example, in the 55 embodiment shown in FIG. 15, if edge 1522 falls too soon after edge 1532 during the fluorescent light decay 1542, then non-phosphorescent objects will be captured in the dark cameras 204-205. If the edge 1522 is then slowly delayed relative to edge 1532, the non-phosphorescent objects in dark camera 60 204-205 will gradually get darker until the entire image captured is dark, except for the phosphorescent objects in the image. At that point, edge 1522 will be past the decay interval 1542 of the fluorescent lamps. The process described in this paragraph can be readily implemented in an application on a 65 general-purpose computer that controls the output levels of sync signals 221-223.

22

In another embodiment the decay of the phosphor in the fluorescent lamps is such that even after edge 1532 is delayed as long as possible after 1522 to allow for the dark cameras 204-205 to have a long enough shutter time to capture a bright enough image of phosphorescent patterns in the scene, there is still a small amount of light from the fluorescent lamp illuminating the scene such that non-phosphorescent objects in the scene are slightly visible. Generally, this does not present a problem for the pattern processing techniques described in the co-pending applications identified above. So long as the phosphorescent patterns in the scene are substantially brighter than the dimly-lit non-fluorescent objects in the scene, the pattern processing techniques will be able to adequately correlate and process the phosphorescent patterns and treat the dimly lit non-fluorescent objects as noise.

SYNCHRONIZING CAMERAS WITH LOWER FRAME RATES THAN THE LIGHT PANEL FLASHING RATE

In another embodiment the lit cameras 214-215 and dark cameras 204-205 are operated at a lower frame rate than the flashing rate of the light panels 208-209. For example, the capture frame rate may be 30 frames per second (fps), but so as to keep the flashing of the light panels 208-209 about the threshold of human perception, the light panels 208-209 are flashed at 90 flashes per second. This situation is illustrated in FIG. 16. The sync signals 221-3 are controlled the same as the are in FIG. 15 for lit time interval 1601 and dark time interval 1602 (light cycle 0), but after that, only light panel 208-9 sync signal 222 continues to oscillate for light cycles 1 and 2. Sync signals 221 and 223 remain in constant high state 1611 and 1626 during this interval. Then during light cycle 3, sync signals 221 and 223 once again trigger with edges 1654 and 1662, opening the shutters of lit cameras 214-215 during lit time interval 1604, and then opening the shutters of dark cameras 204-205 during dark time interval 1605.

In another embodiment where the lit cameras 214-215 and dark cameras 204-205 are operated at a lower frame rate than the flashing rate of the light panels 208-209, sync signal 223 causes the lit cameras 214-215 to open their shutters after sync signal 221 causes the dark cameras 204-205 to open their shutters. This is illustrated in FIG. 17. An advantage of this timing arrangement over that of FIG. 16 is the fluorescent lamps transition from dark to lit (edge 1744) more quickly than they decay from lit to dark (edge 1742). This makes it possible to abut the dark frame interval 1702 more closely to the lit frame interval 1701. Since captured lit textures are often used to be mapped onto 3D surfaces reconstructed from dark camera images, the closer the lit and dark captures occur in time, the closer the alignment will be if the captured object is in motion.

In another embodiment where the lit cameras 214-215 and dark cameras 204-205 are operated at a lower frame rate than the flashing rate of the light panels 208-209, the light panels 208-209 are flashed with varying light cycle intervals so as to allow for longer shutter times for either the dark cameras 204-205 or lit cameras 214-215, or to allow for longer shutters times for both cameras. An example of this embodiment is illustrated in FIG. 18 where the light panels 208-209 are flashed at 3 times the frame rate of cameras 204-205 and 214-215, but the open shutter interval 1821 of the dark cameras 204-205 is equal to almost half of the entire frame time 1803. This is accomplished by having light panel 208-209 sync signal 222 turn off the light panels 208-209 for a long dark interval 1802 while dark cam sync signal 221 opens the dark shutter for the duration of long dark interval 1802. Then

23

sync signal 222 turns the light panels 208-209 on for a brief lit interval 1801, to complete light cycle 0 and then rapidly flashes the light panels 208-209 through light cycles 1 and 2. This results in the same number of flashes per second as the embodiment illustrated in FIG. 17, despite the much longer 5 dark interval 1802. The reason this is a useful configuration is that the human visual system will still perceive rapidly flashing lights (e.g. at 90 flashes per second) as being lit continuously, even if there are some irregularities to the flashing cycle times. By varying the duration of the lit and dark intervals of 10 the light panels 208-209, the shutter times of either the dark cameras 204-205, lit cameras 214-215 or both can be lengthened or shortened, while still maintaining the human perception that light panels 208-209 are continuously lit.

HIGH AGGREGATE FRAME RATES FROM CASCADED CAMERAS

FIG. 19 illustrates another embodiment where lit cameras **1941-1946** and dark cameras **1931-1936** are operated at a 20 lower frame rate than the flashing rate of the light panels 208-209. FIG. 19 illustrates a similar motion capture system configuration as FIG. 2a, but given space limitations in the diagram only the light panels, the cameras, and the synchronization subsystem is shown. The remaining components of 25 FIG. 2a that are not shown (i.e. the interfaces from the cameras to their camera controllers and the data processing subsystem, as well as the output of the data processing subsystem) are a part of the full configuration that is partially shown in FIG. 19, and they are coupled to the components of 30 FIG. 19 in the same manner as they are to the components of FIG. 2a. Also, FIG. 19 shows the Light Panels 208-209 in their "lit" state. Light Panels 208-209 can be switched off by sync signal 222 to their "dark" state, in which case performer 202 would no longer be lit and only the phosphorescent 35 pattern applied to her face would be visible, as it is shown in FIG. 2b.

FIG. 19 shows 6 lit cameras 1941-1946 and 6 dark cameras 1931-1936. In the presently preferred embodiment color cameras are used for the lit cameras 1941-1946 and grayscale 40 cameras are used for the dark camera 1931-1936, but either type could be used for either purpose. The shutters on the cameras 1941-1946 and 1931-1936 are driven by sync signals 1921-1926 from sync generator PCI card 224. The sync generator card is installed in sync generator PC 220, and operates as previously described. (Also, in another embodiment it may be replaced by using the parallel port outputs of sync generator PC 220 to drive sync signals 1921-1926, and in this case, for example, bit 0 of the parallel port would drive sync signals 222, and bits 1-6 of the parallel port would drive sync signals 1921-1926, respectively.)

Unlike the previously described embodiments, where there is one sync signal 221 for the dark cameras and one sync signal 223 for the lit cameras, in the embodiment illustrated in FIG. 19, there are 3 sync signals 1921-1923 for the dark 55 cameras and 3 sync signals 1924-1926 for the dark cameras. The timing for these sync signals 1921-1926 is shown in FIG. 20. When the sync signals 1921-1926 are in a high state they cause the shutters of the cameras attached to them to be closed, when the sync signals are in a low state, they cause the shutters of the cameras attached to them to be open.

In this embodiment, as shown in FIG. 20, the light panels 208-209 are flashed at a uniform 90 flashes per second, as controlled by sync signal 222. The light output of the light panels 208-209 is also shown, including the fluorescent lamp 65 decay 2042. Each camera 1931-1936 and 1941-1946 captures images at 30 frames per second (fps), exactly at a 1:3 ratio

with the 90 flashes per second rate of the light panels. Each camera captures one image per each 3 flashes of the light panels, and their shutters are sequenced in a "cascading" order, as illustrated in FIG. 20. A sequence of 3 frames is captured in the following manner:

24

Sync signal 222 transitions with edge 2032 from a high to low state 2031. Low state 2031 turns off light panels 208-209, which gradually decay to a dark state 2041 following decay curve 2042. When the light panels are sufficiently dark for the purposes of providing enough contrast to separate the phosphorescent makeup, paint, or dye from the non-phosphorescent surfaces in the scene, sync signal 1921 transitions to low state 2021. This causes dark cameras 1931-1932 to open their shutters and capture a dark frame. After the time interval 2002, sync signal 222 transitions with edge 2034 to high state 2033 which causes the light panels 208-209 to transition with edge 2044 to lit state 2043. Just prior to light panels 208-209 becoming lit, sync signal 1921 transitions to high state 2051 closing the shutter of dark cameras 1931-1932. Just after the light panels 208-209 become lit, sync signal 1924 transition to low state 2024, causing the shutters on the lit cameras 1941-1942 to open during time interval 2001 and capture a lit frame. Sync signal 222 transitions to a low state, which turns off the light panels 208-9, and sync signal 1924 transitions to a high state at the end of time interval 2001, which closes the shutters on lit cameras 1941-1942.

The sequence of events described in the preceding paragraphs repeats 2 more times, but during these repetitions sync signals 1921 and 1924 remain high, keeping their cameras shutters closed. For the first repetition, sync signal 1922 opens the shutter of dark cameras 1933-1934 while light panels 208-209 are dark and sync signal 1925 opens the shutter of lit cameras 1943-1944 while light panels 208-209 are lit. For the second repetition, sync signal 1923 opens the shutter of dark cameras 1935-1936 while light panels 208-209 are dark and sync signal 1926 opens the shutter of lit cameras 1945-1946 while light panels 208-209 are lit.

Then, the sequence of events described in the prior 2 paragraphs continues to repeat while the motion capture session illustrated in FIG. 19 is in progress, and thus a "cascading" sequence of camera captures allows 3 sets of dark and 3 sets of lit cameras to capture motion at 90 fps (i.e. equal to the light panel flashing rate of 90 flashes per second), despite the fact each cameras is only capturing images at 30 fps. Because each camera only captures 1 of every 3 frames, the captured frames stored by the data processing system 210 are then interleaved so that the stored frame sequence at 90 fps has the frames in proper order in time. After that interleaving operation is complete, the data processing system will output reconstructed 3D surfaces 207 and textured 3D surfaces 217 at 90 fps.

Although the "cascading" timing sequence illustrated in FIG. 20 will allow cameras to operate at 30 fps while capturing images at an aggregate rate of 90 fps, it may be desirable to be able to switch the timing to sometimes operate all of the cameras 1921-1923 and 1924-1926 synchronously. An example of such a situation is for the determination of the relative position of the cameras relative to each other. Precise knowledge of the relative positions of the dark cameras 1921-1923 is used for accurate triangulation between the cameras, and precise knowledge of the position of the lit cameras 1924-1926 relative to the dark cameras 1921-1923 is used for establishing how to map the texture maps captured by the lit cameras 1924-1926 onto the geometry reconstructed from the images captured by the dark cameras 1921-1923. One prior art method (e.g. that is used to calibrate cameras for the motion capture cameras from Motion Analysis Corporation)

25

to determine the relative position of fixed cameras is to place a known object (e.g. spheres on the ends of a rods in a rigid array) within the field of view of the cameras, and then synchronously (i.e. with the shutters of all cameras opening and closing simultaneously) capture successive frames of the 5 image of that known object by all the cameras as the object is in motion. By processing successive frames from all of the cameras, it is possible to calculate the relative position of the cameras to each other. But for this method to work, all of the cameras need to be synchronized so that they capture images simultaneously. If the camera shutters do not open simultaneously, then when each non-simultaneous shutter opens, its camera will capture the moving object at a different position in space than other cameras whose shutters open at different times. This will make it more difficult (or impossible) to 15 precisely determine the relative position of all the cameras to

FIG. 21 illustrates in another embodiment how the sync signals 1921-6 can be adjusted so that all of the cameras **1931-1936** and **1941-1946** open their shutters simulta- 20 neously. Sync signals 1921-1926 all transition to low states 2121-2126 during dark time interval 2102. Although the light panels 208-209 would be flashed 90 flashes a second, the cameras would be capturing frames synchronously to each other at 30 fps. (Note that in this case, the lit cameras 1941- 25 1946 which, in the presently preferred embodiment are color cameras, also would be capturing frames during the dark interval 2102 simultaneously with the dark cameras 1931-1936.) Typically, this synchronized mode of operation would be done when a calibration object (e.g. an array of phosphorescent spheres) was placed within the field of view of some or all of the cameras, and potentially moved through successive frames, usually before or after a motion capture of a performer. In this way, the relative position of the cameras could determined while the cameras are running synchro- 35 nously at 30 fps, as shown in FIG. 21. Then, the camera timing would be switched to the "cascading" timing shown in FIG. 20 to capture a performance at 90 fps. When the 90 fps frames are reconstructed by data processing system 210, then camera position information, determined previously (or subse- 40 quently) to the 90 fps capture with the synchronous mode time shown in FIG. 21, will be used to both calculate the 3D surface 207 and map the captured lit frame textures onto the 3D surface to create textured 3D surface 217

When a scene is shot conventionally using prior art meth- 45 ods and cameras are capturing only 2D images of that scene, the "cascading" technique to use multiple slower frame rate cameras to achieve a higher aggregate frame rate as illustrated in FIGS. 19 and 20 will not produce high-quality results. The reason for this is each camera in a "cascade" (e.g. cameras 50 1931, 1933 and 1935) will be viewing the scene from a different point of view. If the captured 30 fps frames of each camera are interleaved together to create a 90 fps sequence of successive frames in time, then when the 90 fps sequence is viewed, it will appear to jitter, as if the camera was rapidly 55 jumping amongst multiple positions. But when slower frame rate cameras are "cascaded" to achieve a higher aggregate frame rate as illustrate in FIGS. 19 and 20 for the purpose capturing the 3D surfaces of objects in a scene, as described herein and in combination with the methods described in the 60 co-pending applications, the resulting 90 fps interleaved 3D surfaces 207 and textured 3D surfaces 217 do not exhibit jitter at all, but rather look completely stable. The reason is the particular position of the cameras 1931-1936 and 1941-1946 does not matter in the reconstruction 3D surfaces, just so long as the at least a pair of dark cameras 1931-1936 during each dark frame interval 2002 has a non-oblique view (e.g. <30

26

degrees) of the surface area (with phosphorescent makeup, paint or dye) to be reconstructed. This provides a significant advantage over conventional prior art 2D motion image capture (i.e. commonly known as video capture), because typically the highest resolution sensors commercially available at a given time have a lower frame rate than commercially available lower resolution sensors. So, 2D motion image capture at high resolutions is limited to the frame rate of a single high resolution, under the principles described herein, is able to achieve n times the frames rate of a single high resolution sensor, where n is the number of camera groups "cascaded" together, per the methods illustrated in FIGS. 19 and 20.

COLOR MAPPING OF PHOSPHOR BRIGHTNESS

Ideally, the full dynamic range, but not more, of dark cameras 204-205 should be utilized to achieve the highest quality pattern capture. For example, if a pattern is captured that is too dark, noise patterns in the sensors in cameras 204-205 may become as prominent as captured patterns, resulting in incorrect 3D reconstruction. If a pattern is too bright, some areas of the pattern may exceed the dynamic range of the sensor, and all pixels in such areas will be recorded at the maximum brightness level (e.g. 255 in an 8-bit sensor), rather than at the variety or brightness levels that actually make up that area of the pattern. This also will result in incorrect 3D reconstruction. So, prior to capturing a pattern, per the techniques described herein, it is advantageous to try to make sure the brightness of the pattern throughout is not too dark, nor too bright (e.g. not reaching the maximum brightness level of the camera sensor).

When phosphorescent makeup is applied to a performer, or when phosphorescent makeup, paint or dye is applied to an object, it is difficult for the human eye to evaluate whether the phosphor application results in a pattern captured by the dark cameras 204-205 that is bright enough in all locations or too bright in some locations. FIG. 22 image 2201 shows a cylinder covered in a random pattern of phosphor. It is difficult, when viewing this image on a computer display (e.g. an LCD monitor) to determine precisely if there are parts of the pattern that are too bright (e.g. location 2220) or too dark (e.g. location 2210). There are many reasons for this. Computer monitors often do not have the same dynamic range as a sensor (e.g. a computer monitor may only display 128 unique gray levels, while the sensor captures 256 gray levels). The brightness and/or contrast may not be set correctly on the monitor. Also, the human eye may have trouble determining what constitutes a maximum brightness level because the brain may adapt to the brightness it sees, and consider whatever is the brightest area on the screen to be the maximum brightness. For all of these reasons, it is helpful to have an objective measure of brightness that humans can readily evaluate when applying phosphorescent makeup, paint or dye. Also, it is helpful to have an objective measure brightness as the lens aperture and/or gain is adjusted on dark cameras 204-205 and/or the brightness of the light panels 208-209 is adjusted.

Image 2202 shows such an objective measure. It shows the same cylinder as image 2201, but instead of showing the brightness of each pixel of the image as a grayscale level (in this example, from 0 to 255), it shows it as a color. Each color represents a range of brightness. For example, in image 2202 blue represents brightness ranges 0-32, orange represents brightness ranges 192-223 and dark red represents brightness ranges 224-255. Other colors represent other brightness ranges. Area 2211, which is blue, is now clearly identifiable as

27

an area that is very dark, and area 2221, which is dark red, is now clearly identifiable as an area that is very bright. These determinations can be readily made by the human eye, even if the dynamic range of the display monitor is less than that of the sensor, or if the display monitor is incorrectly adjusted, or 5 if the brain of the observer adapts to the brightness of the display. With this information the human observer can change the application of phosphorescent makeup, dye or paint. The human observer can also adjust the aperture and/or the gain setting on the cameras 204-205 and/or the brightness of the 10 light panels 208-209.

In one embodiment image 2202 is created by application software running on one camera controller computer 225 and is displayed on a color LCD monitor attached to the camera controller computer 225. The camera controller computer 15 225 captures a frame from a dark camera 204 and places the pixel values of the captured frame in an array in its RAM. For example, if the dark cameras 204 is a 640×480 grayscale camera with 8 bits/pixel, then the array would be a 640×480 array of 8-bit bytes in RAM. Then, the application takes each 20 pixel value in the array and uses it as an index into a lookup table of colors, with as many entries as the number of possible pixel values. With 8 bits/pixel, the lookup table has 256 entries. Each of the entries in the lookup table is pre-loaded (by the user or the developer of the application) with the 25 desired Red, Green, Blue (RGB) color value to be displayed for the given brightness level. Each brightness level may be given a unique color, or a range of brightness levels can share a unique color. For example, for image 2202, lookup table entries 0-31 are all loaded with the RGB value for blue, 30 entries 192-223 are loaded with the RGB value for orange and entries 224-255 are loaded with the RGB value for dark red. Other entries are loaded with different RGB color values. The application uses each pixel value from the array (e.g. 640× 480 of 8-bit grayscale values) of the captured frame as an 35 index into this color lookup take, and forms a new array (e.g. 640×480 of 24-bit RGB values) of the looked-up colors. This new array of look-up colors is then displayed, producing a color image such as 1102.

If a color camera (either lit camera 214 or dark camera 204) 40 is used to capture the image to generate an image such as 2202, then one step is first performed after the image is captured and before it is processed as described in the preceding paragraph. The captured RGB output of the camera is stored in an array in camera controller computer 225 RAM 45 (e.g. 640×480 with 24 bits/pixel). The application running on camera controller computer 225 then calculates the average brightness of each pixel by averaging the Red, Green and Blue values of each pixel (i.e. Average=(R+G+B)/3), and places those averages in a new array (e.g. 640×480 with 8 50 bits/pixel). This array of Average pixel brightnesses (the "Average array") will soon be processed as if it were the pixel output of a grayscale camera, as described in the prior paragraph, to produce a color image such as 2202. But, first there is one more step: the application examines each pixel in the 55 captured RGB array to see if any color channel of the pixel (i.e. R, G, or B) is at a maximum brightness value (e.g. 255). If any channel is, then the application sets the value in the Average array for that pixel to the maximum brightness value (e.g. 255). The reason for this is that it is possible for one color 60 channel of a pixel to be driven beyond maximum brightness (but only output a maximum brightness value), while the other color channels are driven by relatively dim brightness. This may result in an average calculated brightness for that pixel that is a middle-range level (and would not be considered to be a problem for good-quality pattern capture). But, if any of the color channels has been overdriven in a given pixel,

28

then that will result in an incorrect pattern capture. So, by setting the pixel value in the Average array to maximum brightness, this produces a color image 2202 where that pixel is shown to be at the highest brightness, which would alert a human observer of image 1102 of the potential of a problem for a high-quality pattern capture.

It should be noted that the underlying principles of the invention are not limited to the specific color ranges and color choices illustrated in FIG. 22. Also, other methodologies can be used to determine the colors in 2202, instead of using only a single color lookup table. For example, in one embodiment the pixel brightness (or average brightness) values of a captured image is used to specify the hue of the color displayed. In another embodiment, a fixed number of lower bits (e.g. 4) of the pixel brightness (or average brightness) values of a captured image are set to zeros, and then the resulting numbers are used to specify the hue for each pixel. This has the effect of assigning each single hue to a range of brightnesses.

Embodiments of the invention may include various steps as set forth above. The steps may be embodied in machine-executable instructions which cause a general-purpose or special-purpose processor to perform certain steps. Various elements which are not relevant to the underlying principles of the invention such as computer memory, hard drive, input devices, have been left out of the figures to avoid obscuring the pertinent aspects of the invention.

Alternatively, in one embodiment, the various functional modules illustrated herein and the associated steps may be performed by specific hardware components that contain hardwired logic for performing the steps, such as an application-specific integrated circuit ("ASIC") or by any combination of programmed computer components and custom hardware components.

Elements of the present invention may also be provided as a machine-readable medium for storing the machine-executable instructions. The machine-readable medium may include, but is not limited to, flash memory, optical disks, CD-ROMs, DVD ROMs, RAMs, EPROMs, EEPROMs, magnetic or optical cards, propagation media or other type of machine-readable media suitable for storing electronic instructions. For example, the present invention may be downloaded as a computer program which may be transferred from a remote computer (e.g., a server) to a requesting computer (e.g., a client) by way of data signals embodied in a carrier wave or other propagation medium via a communication link (e.g., a modem or network connection).

Throughout the foregoing description, for the purposes of explanation, numerous specific details were set forth in order to provide a thorough understanding of the present system and method. It will be apparent, however, to one skilled in the art that the system and method may be practiced without some of these specific details. For example, although certain specific mixtures and types of phosphorescent material were described above, the underlying principles of the invention may be employed with various alternate mixtures and/or any type of material which exhibits phosphorescent properties. Accordingly, the scope and spirit of the present invention should be judged in terms of the claims which follow.

What is claimed is:

- A method for performing motion capture comprising: mixing phosphor with makeup to create a phosphormakeup mixture;
- applying the phosphor-makeup mixture to surface regions of a motion capture subject;
- strobing a light source on and off, the light source charging phosphor within the phosphor-makeup mixture when on; and

29

- strobing the shutters of a first plurality of cameras synchronously with the strobing of the light source to capture sequences of images of the phosphor-makeup mixture as the subject moves or changes facial expressions during a performance, wherein the shutters are open when the 5 light source is off and the shutters are closed when the light source is on.
- 2. The method as in claim 1 wherein the subject is a performer's face and/or body.
 - 3. The method as in claim 1 wherein the subject is a fabric.
- 4. The method as in claim 1 wherein the phosphor-makeup mixture is applied in a random pattern.
- 5. The method as in claim 1 wherein the subject is a performer's face and the phosphor-makeup mixture is applied as a series of curves on the subject.
 - **6**. The method as in claim **1** further comprising:
 - tracking the motion of the phosphor within the phosphormakeup mixture over time; and
 - generating motion data representing the movement of the subject's face and/or body using the tracked movement of the phosphor within the phosphor-makeup mixture.
 - 7. The method as in claim 1 further comprising:
 - strobing the shutters of a second plurality of cameras synchronously with the strobing of the light source to capture sequences of lit images of the subject, as the subject moves or changes facial expressions during a performance, wherein the shutters of the second plurality of 30 cameras are open to capture the lit images when the light source is on and the shutters of the second plurality of cameras are closed when the light source is off.
- 8. The method as in claim 7 wherein the first plurality of cameras are grayscale cameras and the second plurality of cameras are color cameras.
- 9. The method as in claim 1 wherein the phosphor within the phosphor-makeup mixture comprises ZnS:Cu.
- 10. The method as in claim 1 wherein the phosphor within 40 the phosphor-dye mixture comprises ZnS:Cu. the phosphor-makeup mixture comprises SrA12O4:Eu²⁺, Dv^{3+} .
- 11. The method as in claim 1 wherein the phosphor within the phosphor-makeup mixture comprises SrAl₂O₄:Eu²⁺.
- 12. The method as in claim 1 wherein the light source comprises one or more fluorescent lamps.
- 13. The method as in claim 12 wherein the fluorescent lamps are illuminated by a set of circuits comprising:
 - a ballast circuit electrically coupled to a power source and 50 to at least one of the one or more fluorescent lamps, the ballast circuit configured to provide power to the fluorescent lamp to turn the fluorescent lamp on; and
 - a synchronization control circuit electrically coupled to a synchronization signal generator and to the ballast circuit, the synchronization control circuit to receive a synchronization signal from the synchronization signal generator and to responsively cause the ballast circuit to turn the fluorescent lamp on and off.

30

- 14. A method for performing motion capture of a fabric comprising:
 - mixing phosphor with dye to create a phosphor-dye mixture:
 - applying the phosphor-dye mixture to surface regions of a fabric:
 - strobing a light source on and off, the light source charging phosphor within the phosphor-dye mixture when on;
 - strobing the shutters of a first plurality of cameras synchronously with the strobing of the light source to capture sequences of images of the phosphor-dye mixture as the fabric is moved during a motion capture performance, wherein the shutters are open when the light source is off to capture the sequences of images of the phosphor-dye mixture and the shutters are closed when the light source
- 15. The method as in claim 14 wherein the phosphor-dye mixture is applied in a random pattern.
- 16. The method as in claim 14 wherein the phosphor-dye mixture is applied in a random pattern.
 - 17. The method as in claim 14 further comprising: tracking the motion of the phosphor within the phosphordye mixture over time; and
 - generating motion data representing the movement of the phosphor-dye mixture.
 - 18. The method as in claim 14 further comprising:
 - strobing the shutters of a second plurality of cameras synchronously with the strobing of the light source to capture sequences of lit images of the fabric, as the fabric is moved over time during a performance, wherein the shutters of the second plurality of cameras are open to capture the lit images of the fabric when the light source is on and the shutters of the second plurality of cameras are closed when the light source is off.
- 19. The method as in claim 18 wherein the first plurality of cameras are grayscale cameras and the second plurality of cameras are color cameras.
- 20. The method as in claim 14 wherein the phosphor within
- 21. The method as in claim 14 wherein the phosphor within the phosphor-dye mixture comprises SrAl2O4:Eu²⁺, Dy³⁺.
- 22. The method as in claim 14 wherein the phosphor within the phosphor-dye mixture comprises SrAl₂O₄:Eu²⁺
- 23. The method as in claim 14 wherein the light source comprises one or more fluorescent lamps.
- 24. The method as in claim 23 wherein the fluorescent lamps are illuminated by a set of circuits comprising:
 - a ballast circuit electrically coupled to a power source and to at least one of the one or more fluorescent lamps, the ballast circuit configured to provide power to the fluorescent lamp to turn the fluorescent lamp on; and
 - a synchronization control circuit electrically coupled to a synchronization signal generator and to the ballast circuit, the synchronization control circuit to receive a synchronization signal from the synchronization signal generator and to responsively cause the ballast circuit to turn the fluorescent lamp on and off.

Exhibit 5

(12) United States Patent

Perlman et al.

US 7,567,293 B2 (10) Patent No.: *Jul. 28, 2009

(45) **Date of Patent:**

(54) SYSTEM AND METHOD FOR PERFORMING MOTION CAPTURE BY STROBING A FLUORESCENT LAMP

(75) Inventors: Stephen G. Perlman, Palo Alto, CA (US); John Speck, Sunnyvale, CA (US); Roger Van der Laan, Menlo Park, CA (US); David Allan Johnson, Thornton,

CO (US)

(73) Assignee: OnLive, Inc., Palo Alto, CA (US)

(*) Notice: Subject to any disclaimer, the term of this

patent is extended or adjusted under 35

U.S.C. 154(b) by 261 days.

This patent is subject to a terminal dis-

claimer.

Appl. No.: 11/449,043

Jun. 7, 2006 (22)Filed:

(65)**Prior Publication Data**

US 2007/0285559 A1 Dec. 13, 2007

(51) Int. Cl. H04N 5/222 (2006.01)H04N 9/04 (2006.01)H04N 5/228 (2006.01)H04N 5/225 (2006.01)H04N 5/262 (2006.01)

- 348/207.99; 348/218.1; 348/239
- Field of Classification Search 348/208.14, 348/169–172, 370–371, 218.1, 77, 157; 396/180 See application file for complete search history.

(56)References Cited

U.S. PATENT DOCUMENTS

3,335,716 A 8/1967 Alt et al. 3,699,856 A 10/1972 Chabot et al. 4,389,670 A 6/1983 Davidson et al. 4,417,791 A 11/1983 Erland et al.

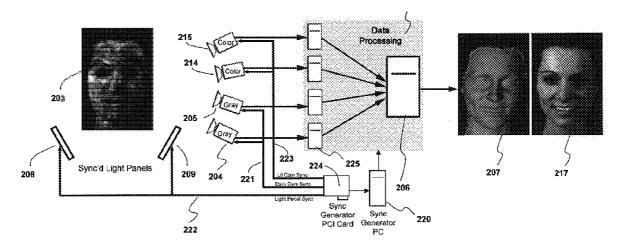
(Continued)

FOREIGN PATENT DOCUMENTS

WO WO-9955220 11/1999

OTHER PUBLICATIONS

Office Action from U.S. Appl. No. 11/449,131, mailed Dec. 29, 2008, 12 pgs.


(Continued)

Primary Examiner—David L Ometz Assistant Examiner—Richard M Bemben (74) Attorney, Agent, or Firm—Blakely Sokoloff Taylor & Zafman LLP

(57)**ABSTRACT**

A system and method are described for performing motion capture on a subject using fluorescent lamps. For example, a system according to one embodiment of the invention comprises: a synchronization signal generator to generate one or more synchronization signals; one or more fluorescent lamps configured to strobe on and off responsive to a first one of the one or more synchronization signals, the fluorescent lamps charging phosphorescent makeup, paint or dye applied to a subject for a motion capture session; and a plurality of cameras having shutters strobed synchronously with the strobing of the light source to capture images of the phosphorescent paint, wherein the shutters are open when the light source is off and the shutters are closed when the light source is on.

30 Claims, 27 Drawing Sheets (6 of 27 Drawing Sheet(s) Filed in Color)

US 7,567,293 B2

Page 2

U.S. PATENT DOCUMENTS

5 225 416 4	0/1002	C. 1
5,235,416 A	8/1993	Stanhope
5,304,809 A *	4/1994	Wickersheim 250/458.1
5,480,341 A	1/1996	Plakos
5,519,826 A	5/1996	Harper et al.
5,569,317 A	10/1996	Sarada et al.
5,575,719 A *	11/1996	Gobush et al 473/223
5,699,798 A	12/1997	Daryl et al.
5,852,672 A	12/1998	Lu
5,878,283 A	3/1999	House et al.
5,966,129 A	10/1999	Matsukuma et al.
6,020,892 A *	2/2000	Dillon 345/419
6,151,118 A	11/2000	Norita et al.
6,241,622 B1*	6/2001	Gobush et al 473/199
6,243,198 B1	6/2001	Sedlmayr
6,473,717 B1	10/2002	Claussen et al.
6,513,921 B1	2/2003	Houle
6,533,674 B1*	3/2003	Gobush 473/199
6,554,706 B2	4/2003	Kim et al.
6,592,465 B2*	7/2003	Lutz et al 473/198
6,633,294 B1*	10/2003	Rosenthal et al 345/474
6,685,326 B2*	2/2004	Debevec et al 362/11
6,758,759 B2*	7/2004	Gobush et al 473/131
6,850,872 B1	2/2005	Marschner et al.
6,943,949 B2	9/2005	Sedlmayr
7,044,613 B2 *	5/2005	Debevec
7,044,013 B2 * 7,068,277 B2 *	6/2006	Menache 345/473
7,008,277 B2 * 7,075,254 B2 *	7/2006	Chitta et al
.,	7/2006 8/2006	Sedlmayr
7,086,954 B2 *		Gobush et al 473/198
7,154,671 B2	12/2006	Sedlmayr
7,184,047 B1	2/2007	Crampton
7,218,320 B2 *	5/2007	Gordon et al
7,333,113 B2 *	2/2008	Gordon 345/475
7,358,972 B2 *	4/2008	Gordon et al 345/473
7,369,681 B2	5/2008	Foth et al.
7,426,422 B2 *	9/2008	Carman et al 700/117
7,436,403 B2*	10/2008	Debevec 345/426
2003/0095186 A1*	5/2003	Aman et al 348/162
2004/0072091 A1	4/2004	Mochizuki et al.
2004/0155962 A1	8/2004	Marks
2005/0040085 A1*	2/2005	Carman et al 209/576
2005/0104543 A1	5/2005	Kazanov et al.
2005/0114073 A1*	5/2005	Gobush 702/143
2005/0143183 A1*	6/2005	Shirai et al 473/151
2005/0161118 A1*	7/2005	Carman et al 144/403
2005/0168578 A1*	8/2005	Gobush 348/207.99
2005/0174771 A1	8/2005	Conner
2005/0215336 A1*	9/2005	Ueda et al 473/131
2005/0215337 A1*	9/2005	Shirai et al 473/151
2006/0055706 A1	3/2006	Perlman et al.
2006/0061680 A1*	3/2006	Madhavan et al 348/370
2006/0192785 A1	8/2006	Marschner et al.
2006/0203096 A1	9/2006	LaSalle et al.
2007/0024946 A1	2/2007	Panasyuk et al.
2007/0060410 A1*	3/2007	Gobush 473/140
2007/0273951 A1	11/2007	Ribi
2007/0279494 A1*	12/2007	Aman et al 348/169
2008/0100622 A1	5/2008	Gordon
		= ===

OTHER PUBLICATIONS

Office Action from U.S. Appl. No. 11/449,127, mailed Oct. 29, 2008,

Office Action from U.S. Appl. No. 11/077,628, mailed Feb. 13, 2009, 24 pgs.

Bascle, B, et al., "Separability of Pose and Expression in Facial Tracking and Animation", IEEE Computer Society, Proceedings of the Sixth International Conference on Computer Vision, (1998), 323-

Chuang, Erika, et al., "Performance Driven Facial Animation using Blendshape Interpolation", Computer Science Department, Stanford University, 8 pages

Graham, MI., "The Power of Texture: A New Approach for Surface Catpure of the Human Hand", Senior Honors Thesis Version 0.1, Thesis Advisor: James Kuffner, Computer Science Dept., Carnegie Mellon University, (Apr. 30, 2004).

Guenter, Brian, et al., "Making Faces", International Conference on Computer Graphics and Interactive Techniques, Proceedings of the 25th Annual Conference on Computer Graphics and Interactive Techniques, (1998), 55-66.

Guskov, Igor, et al., "Trackable Surfaces", Eurographics/SIG-GRAPH Symposium on Computer Animation, (Jul. 2003), 251-257 and 379

MOTIONANALYSIS, "Hawk Digital System", motionanalysis.com/applications/animation/games/hawksytem. html, 4 pgs., printed on Feb. 25, 2005,,, 4.

MOTIONANALYSIS, "The Motion Capture Leader, The Undisputed Leader for 3D Optical Motion Capture System", www. motionanaylsis.com/, (Jan. 27, 2005),, 1.

"Eagle MOTIONANALYSIS,, Digital System". motionanalysis.com/applications/animation/games/eaglesystem. html, 4 pgs., printed on Feb. 25, 2005,,, 4.

MOTIONANALYSIS,, "Falcon Analog System", motionanaylis.com/applications/animation/games/falconsystem. html, 4 pgs., printed on Feb. 25, 2005,,, 4.

MOTIONANALYSIS,, "Video Game Products, Products", www. motionanaylsis.com/applications/animation/games/produtes.html, printed Feb. 25, 2005,,, 1.

Parke, Frederick I., "Computer Generated Animating of Faces", SIG-GRAPH 1972, (1972), 451-457

Radovan, Mauricio, et al., "Facial Animation in a Nutshell: Past, Present and Future", Proceedings of the 2006 Annual Research Conference of the South African Institute of Computer Scientists and Information Technologists on IT Research in Developing Countries, (Oct. 9-11, 2006), 71-79

Scott, Remington, "Sparking Life Notes on the Performance Capture Sessions for The Lord of the Rings: The Two Towers", ACM SIG-GRAPH, vol. 37, No. 4, (Nov. 2003), 17-21.

Vicon, "Vicon Systems Ltd.", www.vicon.com/jsp/index.jsp, (Feb. 25, 2005), 2 pages.

Vicon, "Vicon Motion Systems // MX13, MX13 Camera, The MX13 1.3 Million-pixel Motion Capture Camera", www.vicon.com/jsp/ products/prdouct-detail.jsp?id=170, (Feb. 25, 2005), 2.

Vicon, "Vicon Motion Systems // MX3, MX3 Camera, The MX3 0.3 Million-pixel Motion Capture Camera", www.vicon.com/jsp/products/product-detail.jsp?id=173, (Feb. 25, 2005), 2.

Vicon, "Vicon Motion Systems // MX40, MX40 Camera, The MX40 4 Million-pixel Motion Capture Camera", www.vicon.com/jsp/products/product-detail.jsp?id=167, 2~pgs., printed~on~Feb.~25, 2005,,,~2.Vicon, "Vicon motion Systems // SV Cam", www.vicon.com/jsp/ products/product-detail.jsp?id+189, (Feb. 25, 2005), 1.

Vicon-Products, "MX System: Cameras, The Most Powerful, Practical and Versatile Range of Motion Capture Cameras", www.vicon. com/jsp/products/product-category.jsp?cat=cameras, (Feb. 25, 2006), 1.

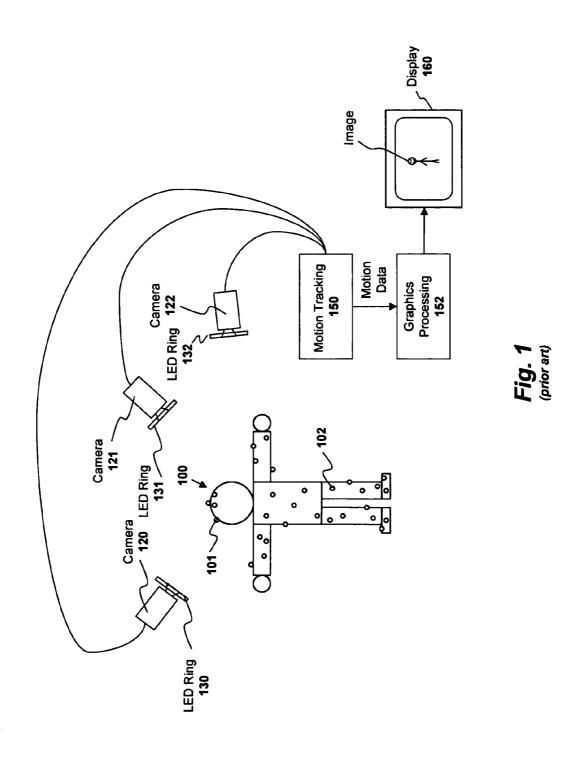
Vicon-Products, "Vicon MX: System Overview", www.vicon.com/ jsp/products/product-overview.jsp, (Feb. 25, 2005), 2.

Wang, Alice, et al., "Assembling an Expressive Facial Animation System", ACM Siggraph Video Game Symposium, Proceedings of the 2007 ACM SIGGRAPH Symposium on Video Games, (2007),

Notice of Allowance from U.S. Appl. No. 11/448,127, mailed Mar. 3, 2009, pp. 7., 7.

Office Action from U.S. Appl. No. 11/255,854, mailed Feb. 23, 2009, 14 pgs.

Bourke, P., "Cross Correlation", "Cross Correlation", Auto Correlation—2D Pattern Identification, Aug. 1996, printed on Oct. 29, 2005, http://astonomy.swin.edu.au/~pbourke/other/correlat.


Guskov, "Direct Pattern Tracking On Flexible Geometry", Guskov et al., "Direct Pattern Tracking On Flexible Geometry", ,6 pages, Winter School of Computer Graphics, 2002, University of Michigan, (2002).

Zhang, et al., "Spacetime Faces:", High Resolution Capture for Modeling and Animation, ACM Transactions on Graphics, University of Washington, (2004), 11 pages.

* cited by examiner

Jul. 28, 2009

Sheet 1 of 27

U.S. Patent Ju

Jul. 28, 2009

Sheet 2 of 27

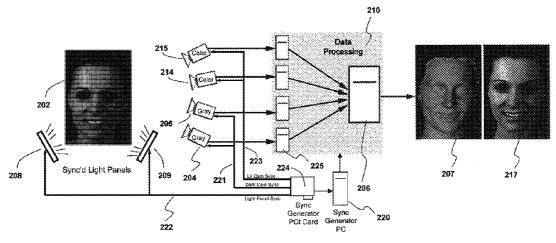


Fig. 2a

Jul. 28, 2009

Sheet 3 of 27

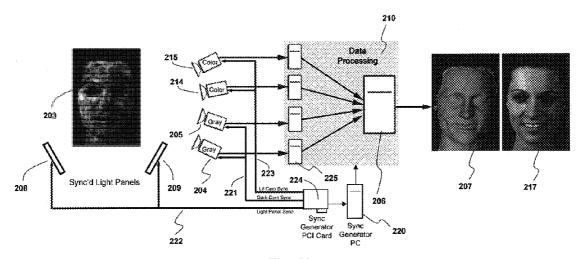
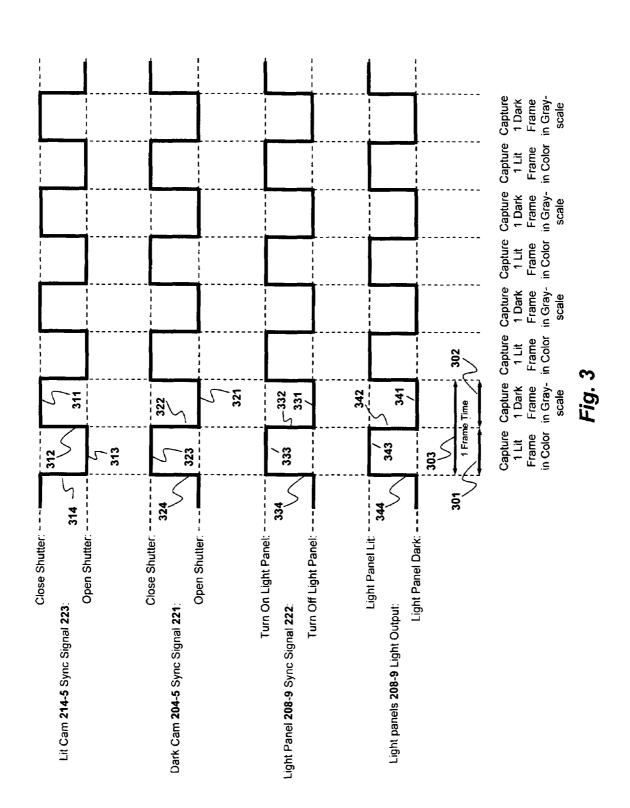
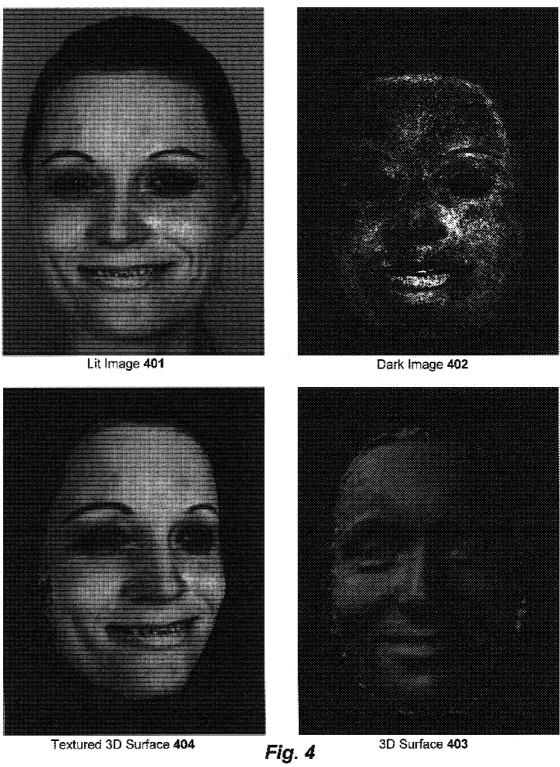
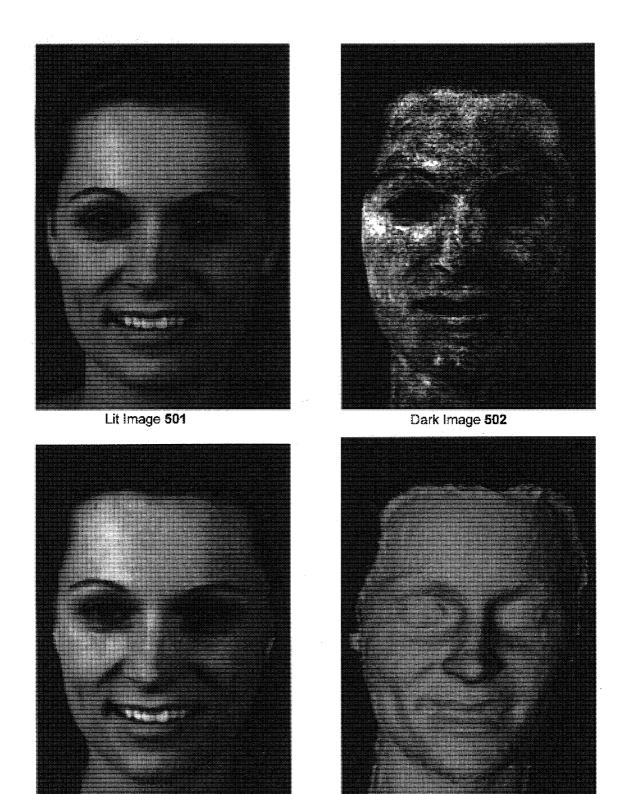



Fig. 2b


Jul. 28, 2009

Sheet 4 of 27


Jul. 28, 2009

Sheet 5 of 27

Jul. 28, 2009

Sheet 6 of 27

Textured 3D Surface 504

Fig. 5

3D Surface 503

U.S. Patent Jul. 28, 2009 Sheet 7 of 27 US 7,567,293 B2

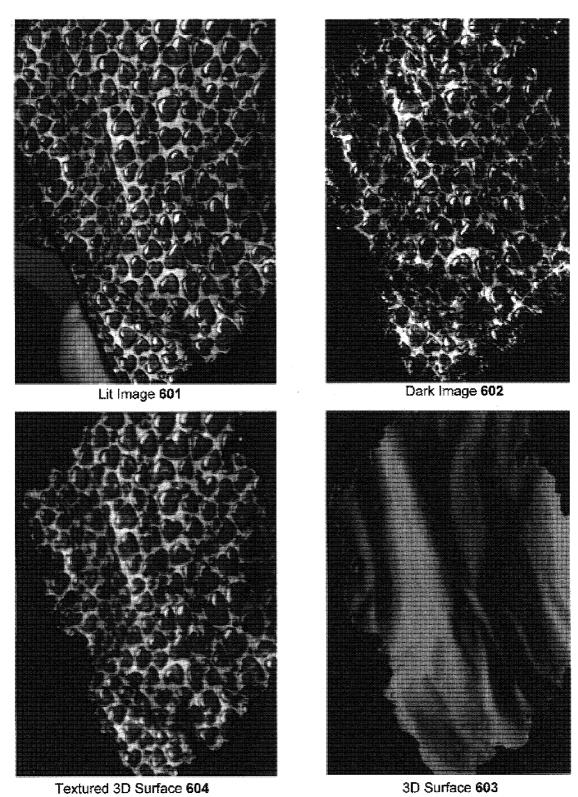


Fig. 6

Jul. 28, 2009

Sheet 8 of 27

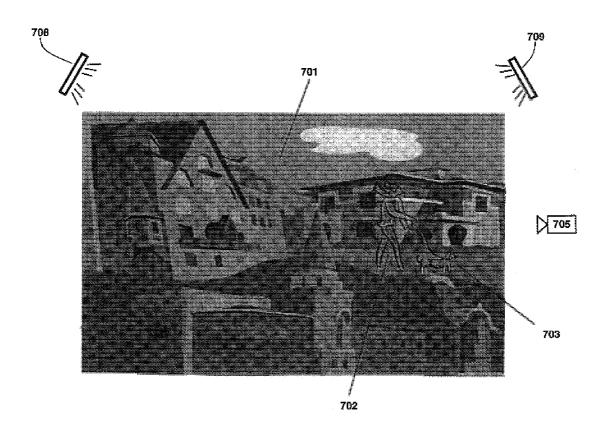


Fig. 7a

Jul. 28, 2009

Sheet 9 of 27

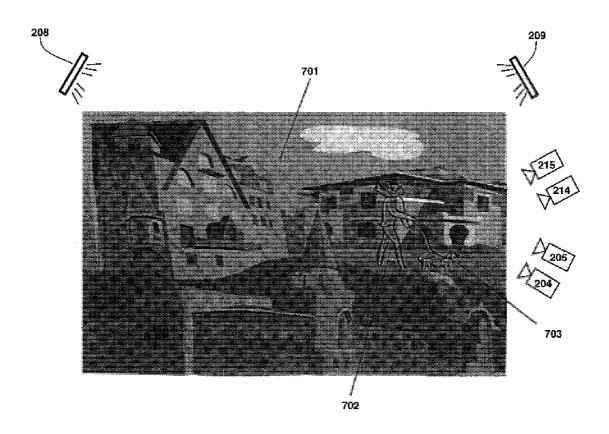


Fig. 7b

Jul. 28, 2009

Sheet 10 of 27

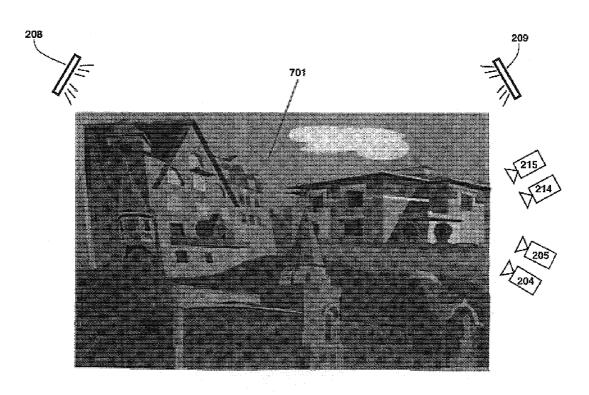
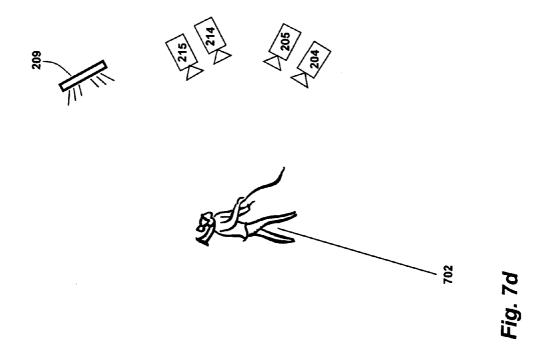
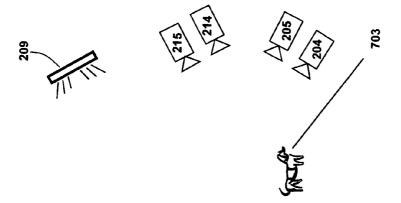



Fig. 7c

Jul. 28, 2009

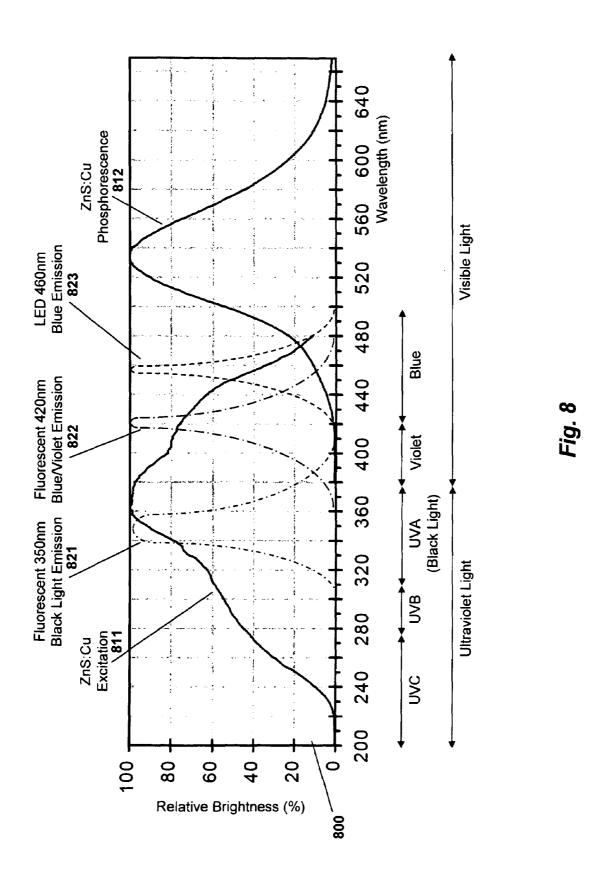
Sheet 11 of 27



Jul. 28, 2009

Sheet 12 of 27

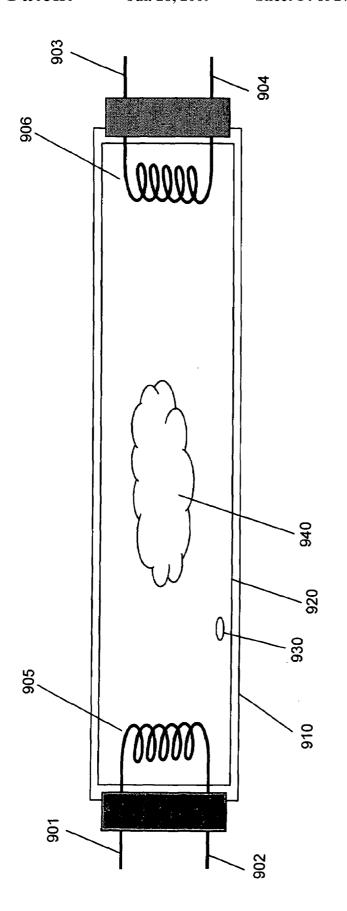
US 7,567,293 B2



-ig. 7e

Jul. 28, 2009

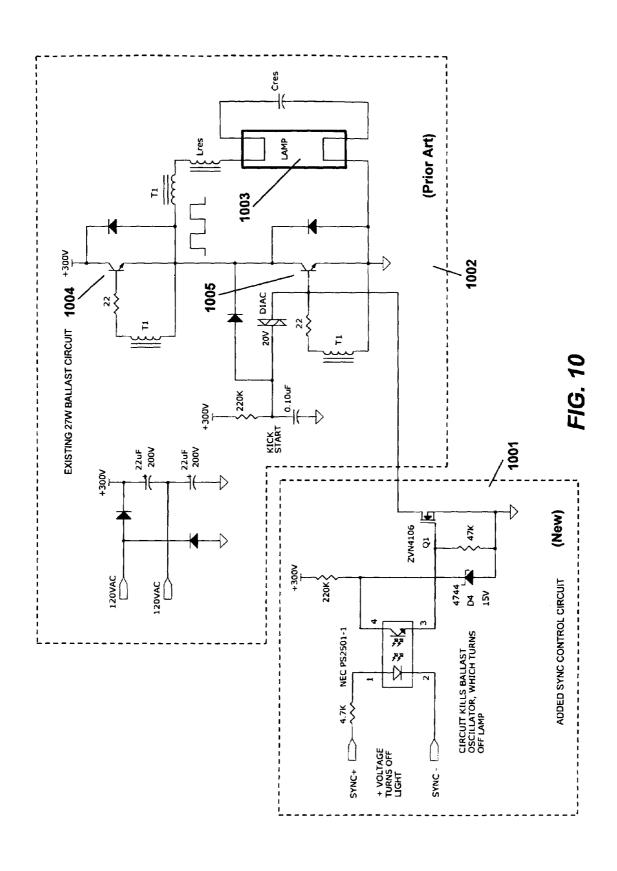
Sheet 13 of 27



U.S. Patent

Jul. 28, 2009

Sheet 14 of 27


US 7,567,293 B2

Prior Art)

Jul. 28, 2009

Sheet 15 of 27

Jul. 28, 2009

Sheet 16 of 27

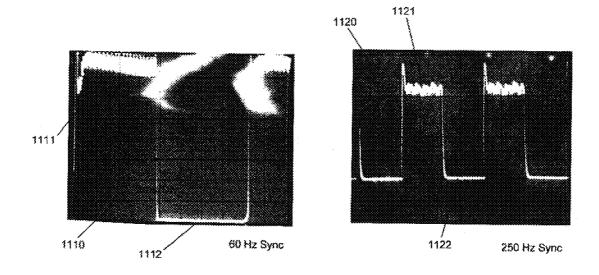


FIG. 11

Jul. 28, 2009

Sheet 17 of 27

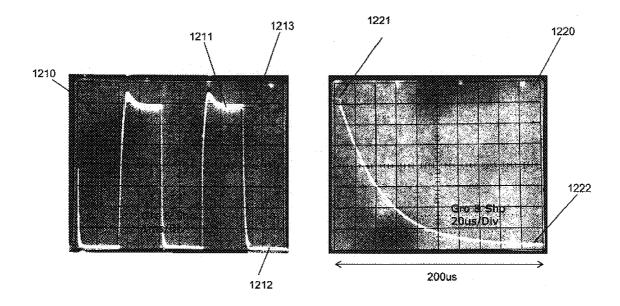
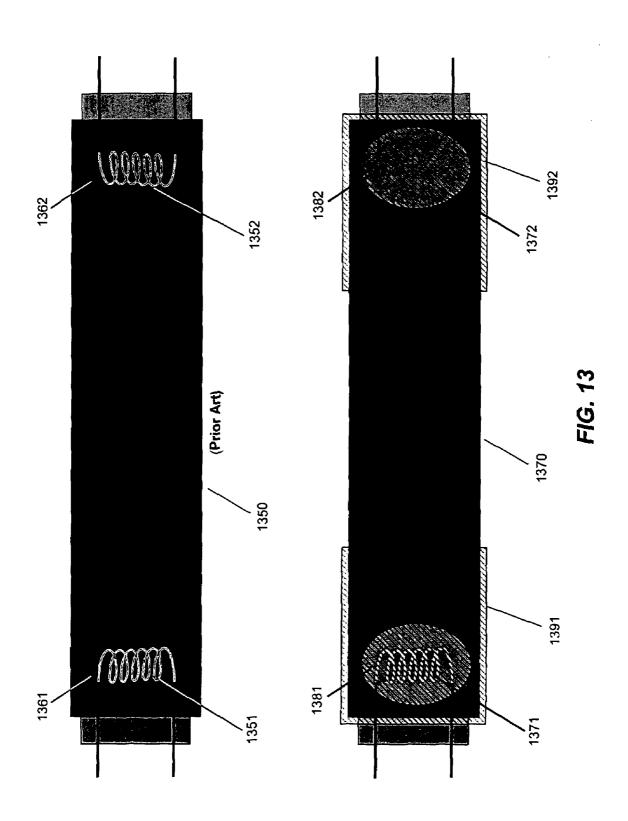
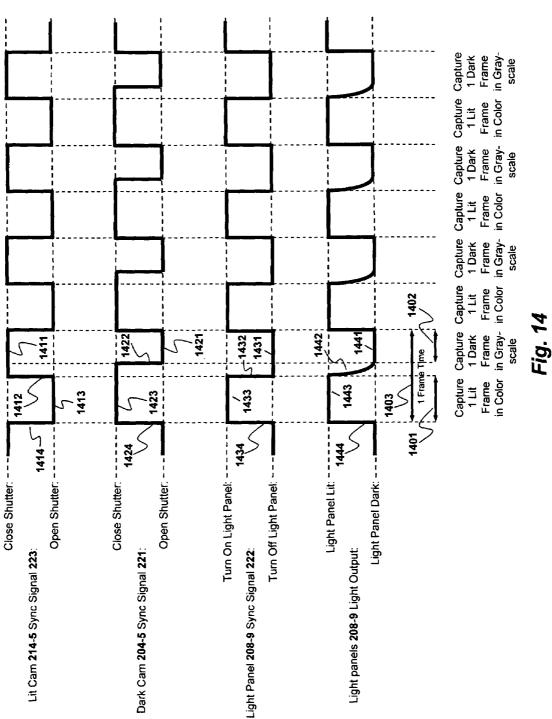
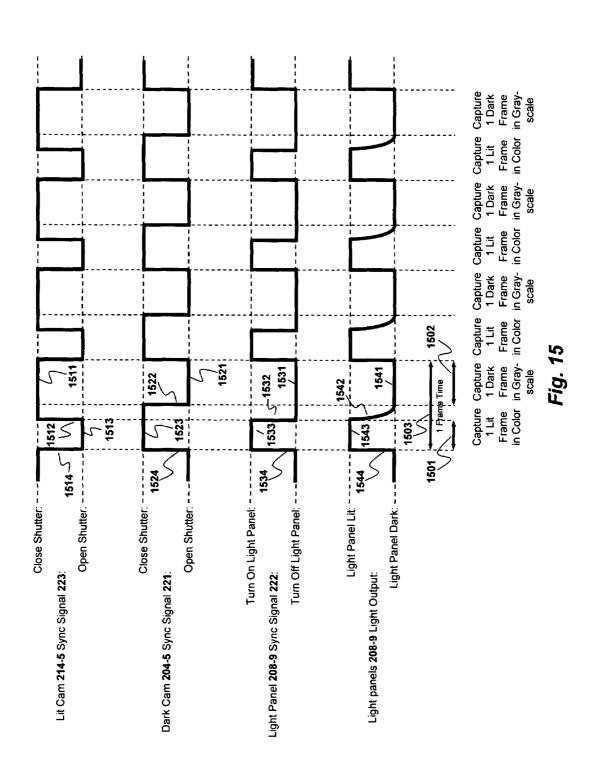



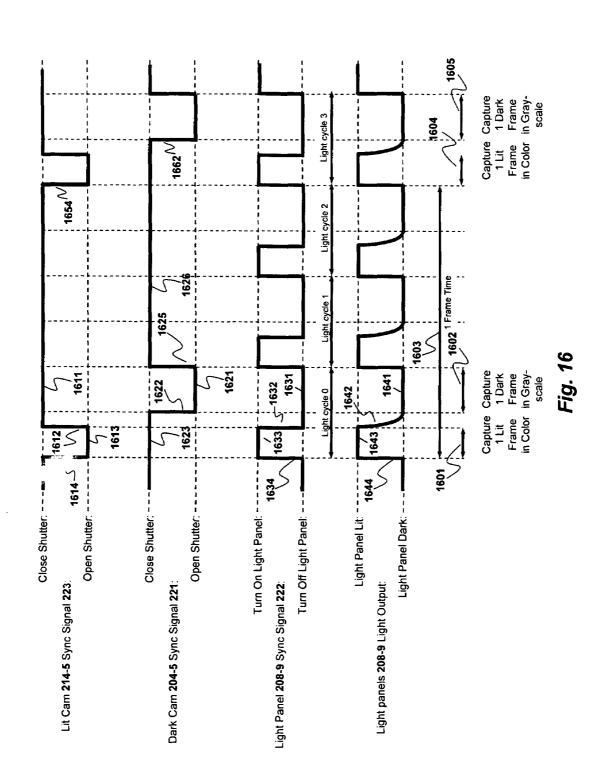
FIG. 12


Jul. 28, 2009

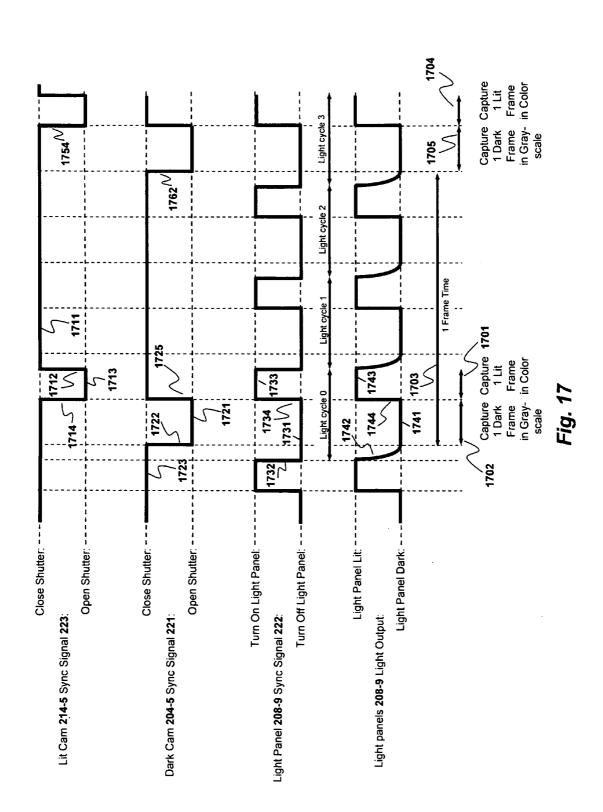
Sheet 18 of 27


Jul. 28, 2009

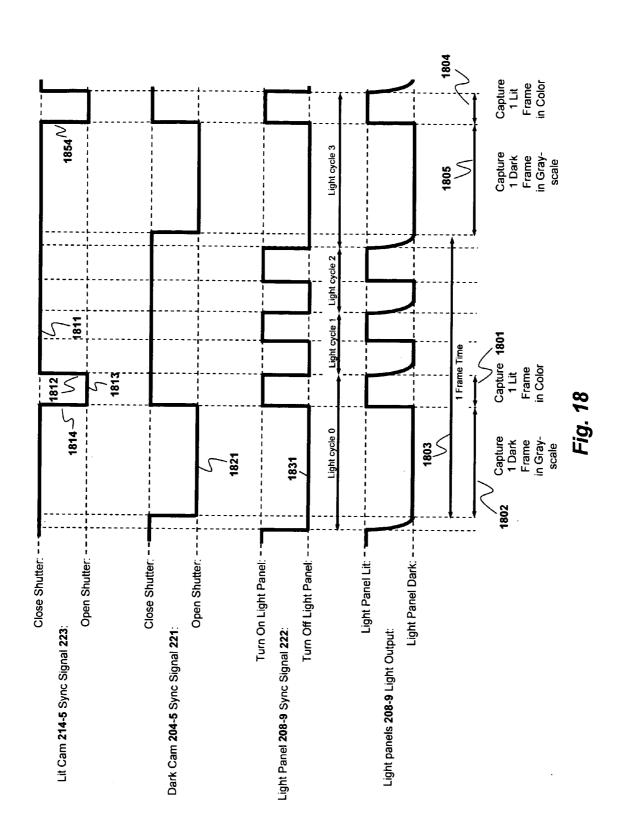
Sheet 19 of 27


Jul. 28, 2009

Sheet 20 of 27


Jul. 28, 2009

Sheet 21 of 27


Jul. 28, 2009

Sheet 22 of 27

Jul. 28, 2009

Sheet 23 of 27

Jul. 28, 2009

Sheet 24 of 27

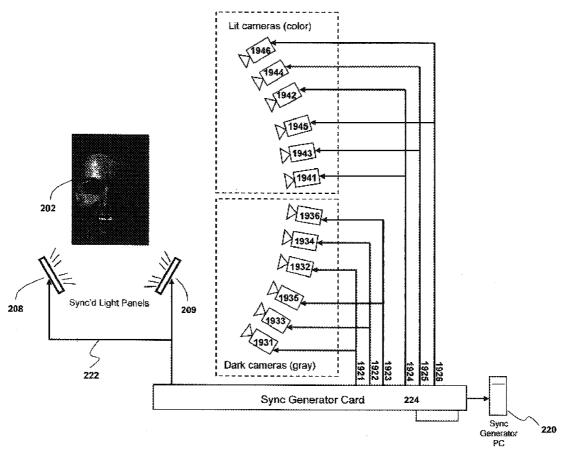
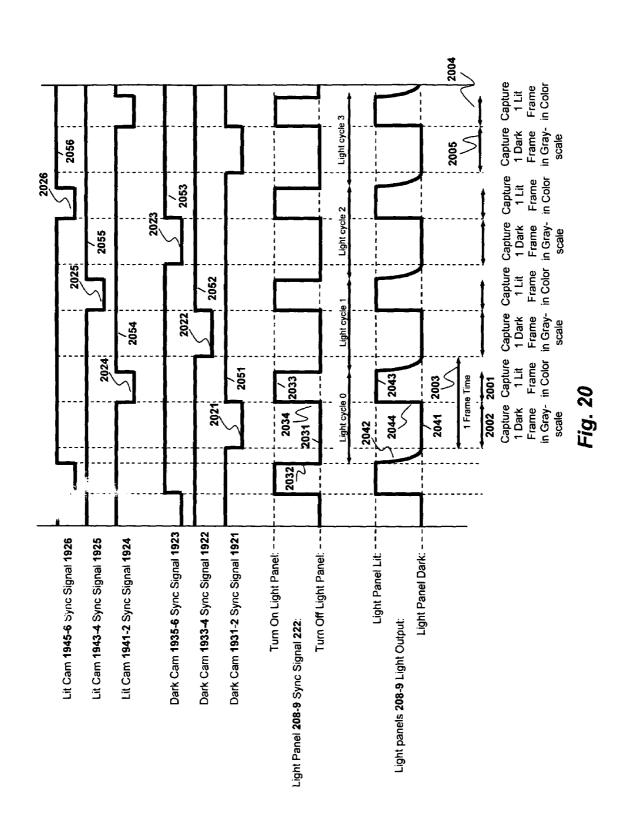
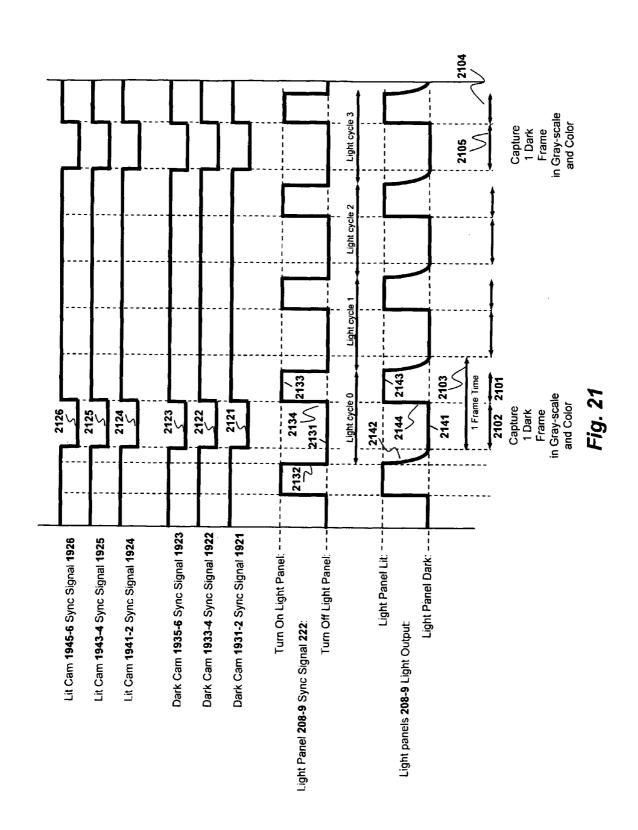



Fig. 19


Jul. 28, 2009

Sheet 25 of 27

Jul. 28, 2009

Sheet 26 of 27

U.S. Patent Jul. 28, 2009 Sheet 27 of 27 US 7,567,293 B2

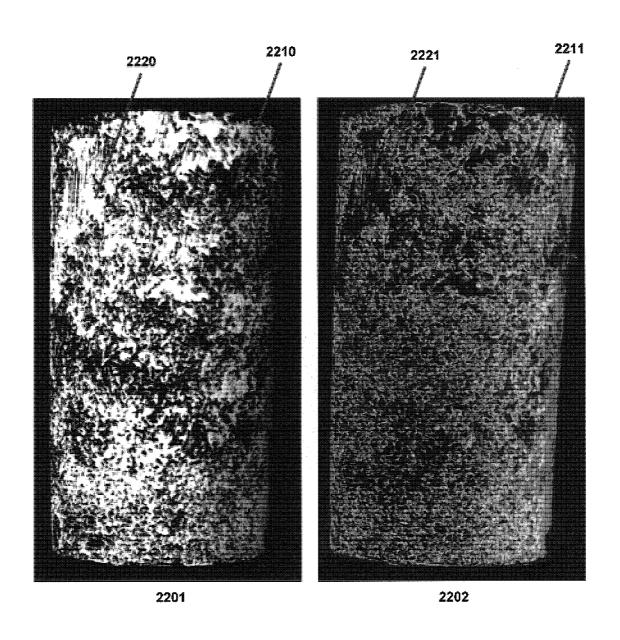


Fig. 22

1

SYSTEM AND METHOD FOR PERFORMING MOTION CAPTURE BY STROBING A FLUORESCENT LAMP

BACKGROUND OF THE INVENTION

1. Field of the Invention

The patent or application file contains at least one drawing executed in color. Copies of this patent or patent publication with color drawing(s) will be provided by the U.S. Patent and Trademark Office upon request and payment of the necessary fee

This invention relates generally to the field of motion capture. More particularly, the invention relates to an improved apparatus and method for performing motion capture using a phosphorescent mixture.

2. Description of the Related Art

"Motion capture" refers generally to the tracking and recording of human and animal motion. Motion capture systems are used for a variety of applications including, for example, video games and computer-generated movies. In a typical motion capture session, the motion of a "performer" is captured and translated to a computer-generated character.

As illustrated in FIG. 1 in a motion capture system, a plurality of motion tracking "markers" (e.g., markers 101, 102) are attached at various points on a performer's 100's body. The points are selected based on the known limitations of the human skeleton. Different types of motion capture markers are used for different motion capture systems. For example, in a "magnetic" motion capture system, the motion markers attached to the performer are active coils which generate measurable disruptions x, y, z and yaw, pitch, roll in a magnetic field.

By contrast, in an optical motion capture system, such as 35 that illustrated in FIG. 1, the markers 101, 102 are passive spheres comprised of retro-reflective material, i.e., a material which reflects light back in the direction from which it came, ideally over a wide range of angles of incidence. A plurality of cameras 120, 121, 122, each with a ring of LEDs 130, 131, 40 132 around its lens, are positioned to capture the LED light reflected back from the retro-reflective markers 101, 102 and other markers on the performer. Ideally, the retro-reflected LED light is much brighter than any other light source in the room. Typically, a thresholding function is applied by the 45 cameras 120, 121, 122 to reject all light below a specified level of brightness which, ideally, isolates the light reflected off of the reflective markers from any other light in the room and the cameras 120, 121, 122 only capture the light from the markers 101, 102 and other markers on the performer.

A motion tracking unit **150** coupled to the cameras is programmed with the relative position of each of the markers **101**, **102** and/or the known limitations of the performer's body. Using this information and the visual data provided from the cameras **120-122**, the motion tracking unit **150** 55 generates artificial motion data representing the movement of the performer during the motion capture session.

A graphics processing unit **152** renders an animated representation of the performer on a computer display **160** (or similar display device) using the motion data. For example, 60 the graphics processing unit **152** may apply the captured motion of the performer to different animated characters and/or to include the animated characters in different computergenerated scenes. In one implementation, the motion tracking unit **150** and the graphics processing unit **152** are programmable cards coupled to the bus of a computer (e.g., such as the PCI and AGP buses found in many personal computers). One

2

well known company which produces motion capture systems is Motion Analysis Corporation (see, e.g., www.motionanalysis.com).

SUMMARY

A system and method are described for performing motion capture on a subject using fluorescent lamps. For example, a system according to one embodiment of the invention comprises: a synchronization signal generator to generate one or more synchronization signals; one or more fluorescent lamps configured to strobe on and off responsive to a first one of the one or more synchronization signals, the fluorescent lamps charging phosphorescent makeup, paint or dye applied to a subject for a motion capture session; and a plurality of cameras having shutters strobed synchronously with the strobing of the light source to capture images of the phosphorescent paint, wherein the shutters are open when the light source is off and the shutters are closed when the light source is on.

BRIEF DESCRIPTION OF THE DRAWINGS

A better understanding of the present invention can be obtained from the following detailed description in conjunction with the drawings, in which:

FIG. 1 illustrates a prior art motion tracking system for tracking the motion of a performer using retro-reflective markers and cameras.

FIG. 2a illustrates one embodiment of the invention during a time interval when the light panels are lit.

FIG. 2b illustrates one embodiment of the invention during a time interval when the light panels are dark.

FIG. 3 is a timing diagram illustrating the synchronization between the light panels and the shutters according to one embodiment of the invention.

FIG. 4 is images of heavily-applied phosphorescent makeup on a model during lit and dark time intervals, as well as the resulting reconstructed 3D surface and textured 3D surface.

FIG. 5 is images of phosphorescent makeup mixed with base makeup on a model both during lit and dark time intervals, as well as the resulting reconstructed 3D surface and textured 3D surface.

FIG. 6 is images of phosphorescent makeup applied to cloth during lit and dark time intervals, as well as the resulting reconstructed 3D surface and textured 3D surface.

FIG. 7a illustrates a prior art stop-motion animation stage.
 FIG. 7b illustrates one embodiment of the invention where
 stop-motion characters and the set are captured together.

FIG. 7c illustrates one embodiment of the invention where the stop-motion set is captured separately from the characters.

FIG. 7d illustrates one embodiment of the invention where a stop-motion character is captured separately from the set and other characters.

FIG. 7*e* illustrates one embodiment of the invention where a stop-motion character is captured separately from the set and other characters.

FIG. **8** is a chart showing the excitation and emission spectra of ZnS:Cu phosphor as well as the emission spectra of certain fluorescent and LED light sources.

FIG. 9 is an illustration of a prior art fluorescent lamp.

FIG. 10 is a circuit diagram of a prior art fluorescent lamp ballast as well as one embodiment of a synchronization control circuit to modify the ballast for the purposes of the present invention.

3

- FIG. 11 is oscilloscope traces showing the light output of a fluorescent lamp driven by a fluorescent lamp ballast modified by the synchronization control circuit of FIG. 9.
- FIG. 12 is oscilloscope traces showing the decay curve of the light output of a fluorescent lamp driven by a fluorescent 5 lamp ballast modified by the synchronization control circuit of FIG. 9.
- FIG. 13 is a illustration of the afterglow of a fluorescent lamp filament and the use of gaffer's tape to cover the filament.
- FIG. 14 is a timing diagram illustrating the synchronization between the light panels and the shutters according to one embodiment of the invention.
- FIG. 15 is a timing diagram illustrating the synchronization between the light panels and the shutters according to one 15 embodiment of the invention.
- FIG. 16 is a timing diagram illustrating the synchronization between the light panels and the shutters according to one embodiment of the invention.
- FIG. 17 is a timing diagram illustrating the synchronization 20 between the light panels and the shutters according to one embodiment of the invention.
- FIG. 18 is a timing diagram illustrating the synchronization between the light panels and the shutters according to one embodiment of the invention.
- FIG. 19 illustrates one embodiment of the camera, light panel, and synchronization subsystems of the invention during a time interval when the light panels are lit.
- FIG. 20 is a timing diagram illustrating the synchronization between the light panels and the shutters according to one 30 embodiment of the invention.
- FIG. 21 is a timing diagram illustrating the synchronization between the light panels and the shutters according to one embodiment of the invention.
- FIG. 22 illustrates one embodiment of the invention where 35 lights and shadows. color is used to indicate phosphor brightness. FIGS. 2a and 2b

DETAILED DESCRIPTION OF PREFERRED EMBODIMENTS

Described below is an improved apparatus and method for performing motion capture using shutter synchronization and/or phosphorescent makeup, paint or dye. In the following description, for the purposes of explanation, numerous specific details are set forth in order to provide a thorough understanding of the present invention. It will be apparent, however, to one skilled in the art that the present invention may be practiced without some of these specific details. In other instances, well-known structures and devices are shown in block diagram form to avoid obscuring the underlying principles of the invention.

The assignee of the present application previously developed a system for performing color-coded motion capture and a system for performing motion capture using a series of reflective curves painted on a performer's face. These systems are described in the co-pending applications entitled "Apparatus and Method for Capturing the Motion and/or Expression of a Performer," Ser. No. 10/942,609, and Ser. No. 10/942,413, Filed Sep. 15, 2004. These applications are assigned to the assignee of the present application and are 60 incorporated herein by reference.

The assignee of the present application also previously developed a system for performing motion capture of random patterns applied to surfaces. This system is described in the co-pending applications entitled "Apparatus and Method for 65 Performing Motion Capture Using A Random Pattern On Capture Surfaces," Ser. No. 11/255,854, Filed Oct. 20, 2005. This

4

application is assigned to the assignee of the present application and is incorporated herein by reference.

The assignee of the present application also previously developed a system for performing motion capture using shutter synchronization and phosphorescent paint. This system is described in the co-pending application entitled "Apparatus and Methodfor Performing Motion Capture Using Shutter Synchronization," Ser. No. 11/077,628, Filed Mar. 10, 2005 (hereinafter "Shutter Synchronization" application). Briefly, in the Shutter Synchronization application, the efficiency of the motion capture system is improved by using phosphorescent paint or makeup and by precisely controlling synchronization between the motion capture cameras' shutters and the illumination of the painted curves. This application is assigned to the assignee of the present application and is incorporated herein by reference.

System Overview

As described in these co-pending applications, by analyzing curves or random patterns applied as makeup on a performer's face rather than discrete marked points or markers on a performer's face, the motion capture system is able to generate significantly more surface data than traditional marked point or marker-based tracking systems. The random patterns or curves are painted on the face of the performer using retro-reflective, non-toxic paint or theatrical makeup. In one embodiment of the invention, non-toxic phosphorescent makeup is used to create the random patterns or curves. By utilizing phosphorescent paint or makeup combined with synchronized lights and camera shutters, the motion capture system is able to better separate the patterns applied to the performer's face from the normally-illuminated image of the face or other artifacts of normal illumination such as highlights and shadows.

FIGS. 2a and 2b illustrate an exemplary motion capture system described in the co-pending applications in which a random pattern of phosphorescent makeup is applied to a performer's face and motion capture is system is operated in a light-sealed space. When the synchronized light panels 208-209 are on as illustrated FIG. 2a, the performers' face looks as it does in image 202 (i.e. the phosphorescent makeup is only slightly visible). When the synchronized light panels 208-209 (e.g. LED arrays) are off as illustrated in FIG. 2b, the performers' face looks as it does in image 203 (i.e. only the glow of the phosphorescent makeup is visible).

Gravscale dark cameras 204-205 are synchronized to the light panels 208-209 using the synchronization signal generator PCI Card 224 (an exemplary PCI card is a PCI-6601 manufactured by National Instruments of Austin, Tex.) coupled to the PCI bus of synchronization signal generator PC 220 that is coupled to the data processing system 210 and so that all of the systems are synchronized together. Light Panel Sync signal 222 provides a TTL-level signal to the light panels 208-209 such that when the signal 222 is high (i.e. \geq 2.0V), the light panels 208-209 turn on, and when the signal 222 is low (i.e. ≤ 0.8 V), the light panels turn off. Dark Cam Sync signal 221 provides a TTL-level signal to the grayscale dark cameras 204-205 such that when signal 221 is low the camera 204-205 shutters open and each camera 204-205 captures an image, and when signal 221 is high the shutters close and the cameras transfer the captured images to camera controller PCs 205. The synchronization timing (explained in detail below) is such that the camera 204-205 shutters open to capture a frame when the light panels 208-209 are off (the "dark" interval). As a result, grayscale dark cameras 204-205 capture images of only the output of the phosphorescent

5

makeup. Similarly, Lit Cam Sync 223 provides TTL-level signal to color lit cameras 214-215 such that when signal 221 is low the camera 204-205 shutters open and each camera 204-205 captures an image, and when signal 221 is high the shutters close and the cameras transfer the captured images to 5 camera controller computers 225. Color lit cameras 214-215 are synchronized (as explained in detail below) such that their shutters open to capture a frame when the light panels 208-209 are on (the "lit" interval). As a result, color lit cameras by the light panels.

As used herein, grayscale cameras 204-205 may be referenced as "dark cameras" or "dark cams" because their shutters normally only when the light panels 208-209 are dark. Similarly, color cameras 214-215 may be referenced as "lit 15 cameras" or "lit cams" because normally their shutters are only open when the light panels 208-209 are lit. While grayscale and color cameras are used specifically for each lighting phase in one embodiment, either grayscale or color cameras can be used for either light phase in other embodiments.

In one embodiment, light panels 208-209 are flashed rapidly at 90 flashes per second (as driven by a 90 Hz square wave from Light Panel Sync signal 222), with the cameras 204-205 and 214-205 synchronized to them as previously described. At 90 flashes per second, the light panels 208-209 are flashing 25 at a rate faster than can be perceived by the vast majority of humans, and as a result, the performer (as well as any observers of the motion capture session) perceive the room as being steadily illuminated and are unaware of the flashing, and the performer is able to proceed with the performance without 30 distraction from the flashing light panels 208-209.

As described in detail in the co-pending applications, the images captured by cameras 204-205 and 214-215 are recorded by camera controllers 225 (coordinated by a centralized motion capture controller 206) and the images and 35 images sequences so recorded are processed by data processing system 210. The images from the various grayscale dark cameras are processed so as to determine the geometry of the 3D surface of the face 207. Further processing by data processing system 210 can be used to map the color lit images 40 captured onto the geometry of the surface of the face 207. Yet further processing by the data processing system 210 can be used to track surface points on the face from frame-to-frame.

In one embodiment, each of the camera controllers 225 and central motion capture controller 206 is implemented using a 45 separate computer system. Alternatively, the camera controllers and motion capture controller may be implemented as software executed on a single computer system or as any combination of hardware and software. In one embodiment, the camera controller computers 225 are rack-mounted com- 50 puters, each using a 945GT Speedster-A4R motherboard from MSI Computer Japan Co., Ltd. (C&K Bldg. 6F 1-17-6, Higashikanda, Chiyoda-ku, Tokyo 101-0031 Japan) with 2 Gbytes of random access memory (RAM) and a 2.16 GHz Intel Core Duo central processing unit from Intel Corpora- 55 tion, and a 300 GByte SATA hard disk from Western Digital, Lake Forest Calif. The cameras 204-205 and 214-215 interface to the camera controller computers 225 via IEEE 1394

In another embodiment the central motion capture control- 60 ler 206 also serves as the synchronization signal generator PC 220. In yet another embodiment the synchronization signal generator PCI card 224 is replaced by using the parallel port output of the synchronization signal generator. PC 220. In such an embodiment, each of the TTL-level outputs of the 65 parallel port are controlled by an application running on synchronization signal generator PC 220, switching each TTL-

6

level output to a high state or a low state in accordance with the desired signal timing. For example, bit 0 of the PC 220 parallel port is used to drive synchronization signal 221, bit 1 is used to drive signal 222, and bit 2 is used to drive signal 224. However, the underlying principles of the invention are not limited to any particular mechanism for generating the synchronization signals.

The synchronization between the light sources and the 214-215 capture images of the performers' face illuminated 10 cameras employed in one embodiment of the invention is illustrated in FIG. 3. In this embodiment, the Light Panel and Dark Cam Sync signals 221 and 222 are in phase with each other, while the Lit Cam Sync Signal 223 is the inverse of signals 221/222. In one embodiment, the synchronization signals cycle between 0 to 5 Volts. In response to the synchronization signal 221 and 223, the shutters of the cameras 204-205 and 214-215, respectively, are periodically opened and closed as shown in FIG. 3. In response to sync signal 222, 20 the light panels are periodically turned off and on, respectively as shown in FIG. 3. For example, on the falling edge 314 of sync signal 223 and on the rising edges 324 and 334 of sync signals 221 and 222, respectively, the lit camera 214-215 shutters are opened and the dark camera 204-215 shutters are closed and the light panels are illuminated as shown by rising edge 344. The shutters remain in their respective states and the light panels remain illuminated for time interval 301. Then, on the rising edge 312 of sync signal 223 and falling edges 322 and 332 of the sync signals 221 and 222, respectively, the lit camera 214-215 shutters are closed, the dark camera 204-215 shutters are opened and the light panels are turned off as shown by falling edge 342. The shutters and light panels are left in this state for time interval 302. The process then repeats for each successive frame time interval 303.

> As a result, during the first time interval 301, a normally-lit image is captured by the color lit cameras 214-215, and the phosphorescent makeup is illuminated (and charged) with light from the light panels 208-209. During the second time interval 302, the light is turned off and the grayscale dark cameras 204-205 capture an image of the glowing phosphorescent makeup on the performer. Because the light panels are off during the second time interval 302, the contrast between the phosphorescent makeup and any surfaces in the room without phosphorescent makeup is extremely high (i.e., the rest of the room is pitch black or at least quite dark, and as a result there is no significant light reflecting off of surfaces in the room, other than reflected light from the phosphorescent emissions), thereby improving the ability of the system to differentiate the various patterns applied to the performer's face. In addition, because the light panels are on half of the time, the performer will be able to see around the room during the performance, and also the phosphorescent makeup is constantly recharged. The frequency of the synchronization signals is 1/(time interval 303) and may be set at such a high rate that the performer will not even notice that the light panels are being turned on and off. For example, at a flashing rate of 90 Hz or above, virtually all humans are unable to perceive that a light is flashing and the light appears to be continuously illuminated. In psychophysical parlance, when a high frequency flashing light is perceived by humans to be continuously illuminated, it is said that "fusion" has been achieved. In one embodiment, the light panels are cycled at 120 Hz; in another embodiment, the light panels are cycled at 140 Hz, both frequencies far above the fusion threshold of any human.

7

However, the underlying principles of the invention are not limited to any particular frequency.

Surface Capture of Skin Using Phosphorescent Random Patterns

FIG. 4 shows images captured using the methods described above and the 3D surface and textured 3D surface reconstructed from them. Prior to capturing the images, a phosphorescent makeup was applied to a Caucasian model's face with 10 an exfoliating sponge. Luminescent zinc sulfide with a copper activator (ZnS:Cu) is the phosphor responsible for the makeup's phosphorescent properties. This particular formulation of luminescent Zinc Sulfide is approved by the FDA color additives regulation 21 CFR Part 73 for makeup preparations. 15 The particular brand is Fantasy F/XT Tube Makeup; Product #: FFX; Color Designation: GL; manufactured by Mehron Inc. of 100 Red Schoolhouse Rd. Chestnut Ridge, N.Y. 10977. The motion capture session that produced these images utilized 8 grayscale dark cameras (such as cameras 20 204-205) surrounding the model's face from a plurality of angles and 1 color lit camera (such as cameras 214-215) pointed at the model's face from an angle to provide the view seen in Lit Image 401. The grayscale cameras were model A311f from Basler AG, An der Strusbek 60-62, 22926 Ahr- 25 ensburg, Germany, and the color camera was a Basler model A311fc. The light panels 208-209 were flashed at a rate of 72 flashes per second.

Lit Image 401 shows an image of the performer captured by one of the color lit cameras 214-215 during lit interval 301, when the light panels 208-209 are on and the color lit camera 214-215 shutters are open. Note that the phosphorescent makeup is quite visible on the performer's face, particularly the lips.

Dark Image 402 shows an image of the performer captured 35 by one of the grayscale dark cameras 204-205 during dark interval 302, when the light panels 208-209 are off and the grayscale dark camera 204-205 shutters are open. Note that only random pattern of phosphorescent makeup is visible on the surfaces where it is applied. All other surfaces in the 40 image, including the hair, eyes, teeth, ears and neck of the performer are completely black.

3D Surface 403 shows a rendered image of the surface reconstructed from the Dark Images 402 from grayscale dark cameras 204-205 (in this example, 8 grayscale dark cameras 45 were used, each producing a single Dark Image 402 from a different angle) pointed at the model's face from a plurality of angles. One reconstruction process which may be used to create this image is detailed in co-pending application Apparatus and Method for Performing Motion Capture Using A 50 Random Pattern On Capture Surfaces, Ser. No. 11/255,854, Filed Oct. 20, 2005. Note that 3D Surface 403 was only reconstructed from surfaces where there was phosphorescent makeup applied. Also, the particular embodiment of the technique that was used to produce the 3D Surface 403 fills in 55 cavities in the 3D surface (e.g., the eyes and the mouth in this example) with a flat surface.

Textured 3D Surface 404 shows the Lit Image 401 used as a texture map and mapped onto 3D Surface 403 and rendered at an angle. Although Textured 3D Surface 404 is a computer-generated 3D image of the model's face, to the human eye it appears real enough that when it is rendered at an angle, such as it is in image 404, it creates the illusion that the model is turning her head and actually looking at an angle. Note that no phosphorescent makeup was applied to the model's eyes and 65 teeth, and the image of the eyes and teeth are mapped onto flat surfaces that fill those cavities in the 3D surface. Nonetheless,

8

the rest of the 3D surface is reconstructed so accurately, the resulting Textured 3D Surface **404** approaches photorealism. When this process is applied to create successive frames of Textured 3D Surfaces **404**, when the frames are played back in real-time, the level of realism is such that, to the untrained eye, the successive frames look like actual video of the model, even though it is a computer-generated 3D image of the model viewed from side angle.

Since the Textured 3D Surfaces 404 produces computergenerated 3D images, such computer-generated images can manipulated with far more flexibility than actual video captured of the model. With actual video it is often impractical (or impossible) to show the objects in the video from any camera angles other than the angle from which the video was shot. With computer-generated 3D, the image can be rendered as if it is viewed from any camera angle. With actual video it is generally necessary to use a green screen or blue screen to separate an object from its background (e.g. so that a TV meteorologist can be composited in front of a weather map), and then that green- or blue-screened object can only be presented from the point of view of the camera shooting the object. With the technique just described, no green/blue screen is necessary. Phosphorescent makeup, paint, or dye is applied to the areas desired to be captured (e.g. the face, body and clothes of the meteorologist) and then the entire background will be separated from the object. Further, the object can be presented from any camera angle. For example, the meteorologist can be shown from a straight-on shot, or from an side angle shot, but still composited in front of the weather

Further, a 3D generated image can be manipulated in 3D. For example, using standard 3D mesh manipulation tools (such as those in Maya, sold by Autodesk, Inc.) the nose can be shortened or lengthened, either for cosmetic reasons if the performer feels her nose would look better in a different size, or as a creature effect, to make the performer look like a fantasy character like Gollum of "Lord of the Rings." More extensive 3D manipulations could add wrinkles to the performers face to make her appear to be older, or smooth out wrinkles to make her look younger. The face could also be manipulated to change the performer's expression, for example, from a smile to a frown. Although some 2D manipulations are possible with conventional 2D video capture, they are generally limited to manipulations from the point of view of the camera. If the model turns her head during the video sequence, the 2D manipulations applied when the head is facing the camera would have to be changed when the head is turned. 3D manipulations do not need to be changed, regardless of which way the head is turned. As a result, the techniques described above for creating successive frames of Textured 3D Surface 404 in a video sequence make it possible to capture objects that appear to look like actual video, but nonetheless have the flexibility of manipulation as computergenerated 3D objects, offering enormous advantages in production of video, motion pictures, and also video games (where characters may be manipulated by the player in 3D).

Note that in FIG. 4 the phosphorescent makeup is visible on the model's face in Lit Image 401 and appears like a yellow powder has been spread on her face. It is particularly prominent on her lower lip, where the lip color is almost entirely changed from red to yellow. These discolorations appear in Textured 3D Surface 404, and they would be even more prominent on a dark-skinned model who is, for example, African in race. Many applications (e.g. creating a fantasy 3D character like Gollum) only require 3D Surface 403, and Textured 3D Surface 404 would only serve as a reference to the director of the motion capture session or as a reference to

9

3D animators manipulating the 3D Surface **403**. But in some applications, maintaining the actual skin color of the model's skin is important and the discolorations from the phosphorescent makeup are not desirable.

Surface Capture Using Phosphorescent Makeup Mixed with Base

FIG. 5 shows a similar set of images as FIG. 4, captured and created under the same conditions: with 8 grayscale dark cameras (such as 204-205), 1 color camera (such as 214-215), with the Lit Image 501 captured by the color lit camera during the time interval when the Light Array 208-9 is on, and the Dark Image 502 captured by one of the 8 grayscale dark cameras when the Light Array 208-9. 3D Surface 503 is reconstructed from the 8 Dark Images 502 from the 8 grayscale dark cameras, and Textured 3D Surface 504 is a rendering of the Lit Image 501 texture-mapped onto 3D Surface 503 (and unlike image 404, image 504 is rendered from a camera angle similar to the camera angle of the color lit camera that captured Lit Image 501).

However, there is a notable differences between the images of FIG. 5 and FIG. 4: The phosphorescent makeup that is noticeably visible in Lit Image 401 and Textured 3D Surface 404 is almost invisible in Lit Image 501 and Textured 3D 25 Surface 504. The reason for this is that, rather than applying the phosphorescent makeup to the model in its pure form, as was done in the motion capture session of FIG. 4, in the embodiment illustrated in FIG. 5 the phosphorescent makeup was mixed with makeup base and was then applied to the 30 model. The makeup base used was "Clean Makeup" in "Buff Beige" color manufactured by Cover Girl, and it was mixed with the same phosphorescent makeup used in the FIG. 4 shoot in a proportion of 80% phosphorescent makeup and 20% base makeup.

Note that mixing the phosphorescent makeup with makeup base does reduce the brightness of the phosphorescence during the Dark interval 302. Despite this, the phosphorescent brightness is still sufficient to produce Dark Image 502, and there is enough dynamic range in the dark images from the 8 40 grayscale dark cameras to reconstruct 3D Surface 503. As previously noted, some applications do not require an accurate capture of the skin color of the model, and in that case it is advantageous to not mix the phosphorescent makeup with base, and then get the benefit of higher phosphorescent 45 brightness during the Dark interval 302 (e.g. higher brightness allows for a smaller aperture setting on the camera lens, which allows for larger depth of field). But some applications do require an accurate capture of the skin color of the model. For such applications, it is advantageous to mix the phospho- 50 rescent makeup with base (in a color suited for the model's skin tone) makeup, and work within the constraints of lower phosphorescent brightness. Also, there are applications where some phosphor visibility is acceptable, but not the level of visibility seen in Lit Image 401. For such applications, a 55 middle ground can be found in terms of skin color accuracy and phosphorescent brightness by mixing a higher percentage of phosphorescent makeup relative to the base.

In another embodiment, luminescent zinc sulfide (ZnS:Cu) in its raw form is mixed with base makeup and applied to the 60 model's face.

Surface Capture of Fabric with Phosphorescent Random Patterns

In another embodiment, the techniques described above are used to capture cloth. FIG. 6 shows a capture of a piece of

10

cloth (part of a silk pajama top) with the same phosphorescent makeup used in FIG. 4 sponged onto it. The capture was done under the exact same conditions with 8 grayscale dark cameras (such as 204-205) and 1 color lit camera (such as 214-215). The phosphorescent makeup can be seen slightly discoloring the surface of Lit Frame 601, during lit interval 301, but it can be seen phosphorescing brightly in Dark Frame 602, during dark interval 302. From the 8 cameras of Dark Frame 602, 3D Surface 603 is reconstructed using the same techniques used for reconstructing the 3D Surfaces 403 and 503. And, then Lit Image 601 is texture-mapped onto 3D Surface 603 to produce Textured 3D Surface 604.

FIG. 6 shows a single frame of captured cloth, one of hundreds of frames that were captured in a capture session while the cloth was moved, folded and unfolded. And in each frame, each area of the surface of the cloth was captured accurately, so long as at least 2 of the 8 grayscale cameras had a view of the area that was not overly oblique (e.g. the camera optical axis was within 30 degrees of the area's surface normal). In some frames, the cloth was contorted such that there were areas within deep folds in the cloth (obstructing the light from the light panels 208-209), and in some frames the cloth was curved such that there were areas that reflected back the light from the light panels 208-209 so as to create a highlight (i.e. the silk fabric was shiny). Such lighting conditions would make it difficult, if not impossible, to accurately capture the surface of the cloth using reflected light during lit interval 301 because shadow areas might be too dark for an accurate capture (e.g. below the noise floor of the camera sensor) and some highlights might be too bright for an accurate capture (e.g. oversaturating the sensor so that it reads the entire area as solid white). But, during the dark interval 302, such areas are readily captured accurately because the phosphorescent makeup emits light quite uniformly, whether deep in a fold or 35 on an external curve of the cloth.

Because the phosphor charges from any light incident upon it, including diffused or reflected light that is not directly from the light panels 208-209, even phosphor within folds gets charged (unless the folds are so tightly sealed no light can get into them, but in such cases it is unlikely that the cameras can see into the folds anyway). This illustrates a significant advantage of utilizing phosphorescent makeup (or paint or dye) for creating patterns on (or infused within) surfaces to be captured: the phosphor is emissive and is not subject to highlights and shadows, producing a highly uniform brightness level for the patterns seen by the grayscale dark cameras 204-205, that neither has areas too dark nor areas too bright.

Another advantage of dyeing or painting a surface with phosphorescent dye or paint, respectively, rather than applying phosphorescent makeup to the surface is that with dye or paint the phosphorescent pattern on the surface can be made permanent throughout a motion capture session. Makeup, by its nature, is designed to be removable, and a performer will normally remove phosphorescent makeup at the end of a day's motion capture shoot, and if not, almost certainly before going to bed. Frequently, motion capture sessions extend across several days, and as a result, normally a fresh application of phosphorescent makeup is applied to the performer each day prior to the motion capture shoot. Typically, each fresh application of phosphorescent makeup will result in a different random pattern. One of the techniques disclosed in co-pending applications is the tracking of vertices ("vertex tracking") of the captured surfaces. Vertex tracking is accomplished by correlating random patterns from one captured frame to the next. In this way, a point on the captured surface can be followed from frame-to-frame. And, so long as the random patterns on the surface stay the same, a point on a

11 12

captured surface even can be tracked from shot-to-shot. In the case of random patterns made using phosphorescent makeup, it is typically practical to leave the makeup largely undisturbed (although it is possible for some areas to get smudged, the bulk of the makeup usually stays unchanged until 5 removed) during one day's-worth of motion capture shooting, but as previously mentioned it normally is removed at the end of the day. So, it is typically impractical to maintain the same phosphorescent random pattern (and with that, vertex tracking based on tracking a particular random pattern) from 10 day-to-day. But when it comes to non-skin objects like fabric, phosphorescent dye or paint can be used to create a random pattern. Because dye and paint are essentially permanent, random patterns will not get smudged during the motion capture session, and the same random patterns will be 15 unchanged from day-to-day. This allows vertex tracking of dyed or painted objects with random patterns to track the same random pattern through the duration of a multi-day motion capture session (or in fact, across multiple motion capture sessions spread over long gaps in time if desired).

Skin is also subject to shadows and highlights when viewed with reflected light. There are many concave areas (e.g., eye sockets) that often are shadowed. Also, skin may be shiny and cause highlights, and even if the skin is covered with makeup to reduce its shininess, performers may sweat during a physical performance, resulting in shininess from sweaty skin. Phosphorescent makeup emits uniformly both from shiny and matte skin areas, and both from convex areas of the body (e.g. the nose bridge) and concavities (e.g. eye sockets). Sweat has little impact on the emission brightness of phosphorescent makeup. Phosphorescent makeup also charges while folded up in areas of the body that fold up (e.g. eyelids) and when it unfolds (e.g. when the performer blinks) the phosphorescent pattern emits light uniformly.

Returning back to FIG. 6, note that the phosphorescent 35 makeup can be seen on the surface of the cloth in Lit Frame 601 and in Textured 3D Surface 604. Also, while this is not apparent in the images, although it may be when the cloth is in motion, the phosphorescent makeup has a small impact on the pliability of the silk fabric. In another embodiment, 40 instead of using phosphorescent makeup (which of course is formulated for skin application) phosphorescent dye is used to create phosphorescent patterns on cloth. Phosphorescent dyes are available from a number of manufacturers. For example, it is common to find t-shirts at novelty shops that 45 have glow-in-the-dark patterns printed onto them with phosphorescent dyes. The dyes can also can be formulated manually by mixing phosphorescent powder (e.g. ZnS:Cu) with off-the-shelf clothing dyes, appropriate for the given type of fabric. For example, Dharma Trading Company with a store 50 at 1604 Fourth Street, San Rafael, Calif. stocks a large number of dyes, each dye designed for certain fabrics types (e.g. Dharma Fiber Reactive Procion Dye is for all natural fibers, Sennelier Tinfix Design—French Silk Dye is for silk and wool), as well as the base chemicals to formulate such dyes. 55 When phosphorescent powder is used as the pigment in such formulations, then a dye appropriate for a given fabric type is produced and the fabric can be dyed with phosphorescent pattern while minimizing the impact on the fabric's pliability.

Surface Capture of Stop-Motion Animation Characters with Phosphorescent Random Patterns

In another embodiment, phosphor is embedded in silicone or a moldable material such as modeling clay in characters, 65 props and background sets used for stop-motion animation. Stop-motion animation is a technique used in animated

motion pictures and in motion picture special effects. An exemplary prior art stop-motion animation stage is illustrated in FIG. 7a. Recent stop-motion animations are feature films Wallace & Gromit in The Curse of the Were-Rabbit (Academy Award-winning best animated feature film released in 2005) (hereafter referenced as WG) and Corpse Bride (Academy Award-nominated best animated feature film released in 2005) (hereafter referred to as CB). Various techniques are used in stop-motion animation. In WG the characters 702-703 are typically made of modeling clay, often wrapped around a metal armature to give the character structural stability. In CB the characters 702-703 are created from puppets with mechanical armatures which are then covered with molded silicone (e.g. for a face), or some other material (e.g. for clothing). The characters 702-703 in both films are placed in complex sets 701 (e.g. city streets, natural settings, or in buildings), the sets are lit with lights such as 708-709, a camera such as 705 is placed in position, and then one frame is shot by the camera 705 (in modern stop-motion animation, 20 typically, a digital camera). Then the various characters (e.g. the man with a leash 702 and the dog 703) that are in motion in the scene are moved very slightly. In the case of WB, often the movement is achieved by deforming the clay (and potentially the armature underneath it) or by changing a detailed part of a character 702-703 (e.g. for each frame swapping in a different mouth shape on a character 702-703 as it speaks). In the case of CB, often motion is achieved by adjusting the character puppet 702-703 armature (e.g. a screwdriver inserted in a character puppet's 702-703 ear might turn a screw that actuates the armature causing the character's 702-703 mouth to open). Also, if the camera 705 is moving in the scene, then the camera 705 is placed on a mechanism that allows it to be moved, and it is moved slightly each frame time. After all the characters 702-703 and the camera 705 in a scene have been moved, another frame is captured by the camera 705. This painstaking process continues frame-byframe until the shot is completed.

There are many difficulties with the stop-motion animation process that both limit the expressive freedom of the animators, limit the degree of realism in motion, and add to the time and cost of production. One of these difficulties is animating many complex characters 702-703 within a complex set 701 on a stop-motion animation stage such as that shown in FIG. 7a. The animators often need to physically climb into the sets, taking meticulous care not to bump anything inadvertently, and then make adjustments to character 702-703 expressions, often with sub-millimeter precision. When characters 702-703 are very close to each other, it gets even more difficult. Also, sometimes characters 702-703 need to be placed in a pose where a character 702-703 can easily fall over (e.g. a character 702-703 is doing a hand stand or a character 702-703 is flying). In these cases the character 702-703 requires some support structure that may be seen by the camera 705, and if so, needs to be erased from the shot in post-production.

In one embodiment illustrated by the stop-motion animation stage in FIG. 7b, phosphorescent phosphor (e.g. zinc sulfide) in powder form can be mixed (e.g. kneaded) into modeling clay resulting in the clay surface phosphorescing in darkness with a random pattern. Zinc sulfide powder also can be mixed into liquid silicone before the silicone is poured into a mold, and then when the silicone dries and solidifies, it has zinc sulfide distributed throughout. In another embodiment, zinc sulfide powder can be spread onto the inner surface of a mold and then liquid silicone can be poured into the mold to solidify (with the zinc sulfide embedded on the surface). In yet another embodiment, zinc sulfide is mixed in with paint that is applied to the surface of either modeling clay or sili-

13

cone. In yet another embodiment, zinc sulfide is dyed into fabric worn by characters **702-703** or mixed into paint applied to props or sets **701**. In all of these embodiments the resulting effect is that the surfaces of the characters **702-703**, props and sets **701** in the scene phosphoresce in darkness with random surface patterns.

At low concentrations of zinc sulfide in the various embodiments described above, the zinc sulfide is not significantly visible under the desired scene illumination when light panels 208-208 are on. The exact percentage of zinc sulfide 10 depends on the particular material it is mixed with or applied to, the color of the material, and the lighting circumstances of the character 702-703, prop or set 701. But, experimentally, the zinc sulfide concentration can be continually reduced until it is no longer visually noticeable in lighting situations 15 where the character 702-703, prop or set 701 is to be used. This may result in a very low concentration of zinc sulfide and very low phosphorescent emission. Although this normally would be a significant concern with live action frame capture of dim phosphorescent patterns, with stop-motion animation, 20 the dark frame capture shutter time can be extremely long (e.g. 1 second or more) because by definition, the scene is not moving. With a long shutter time, even very dim phosphorescent emission can be captured accurately.

Once the characters 702-703, props and the set 701 in the 25 scene are thus prepared, they look almost exactly as they otherwise would look under the desired scene illumination when light panels 208-209 are on, but they phosphoresce in random patterns when the light panels 208-209 are turned off. At this point all of the characters 702-703, props and the set 30 701 of the stop-motion animation can now be captured in 3D using a configuration like that illustrated in FIGS. 2a and 2b and described in the co-pending applications. (FIGS. 7b-7e illustrate stop-motion animation stages with light panels 208-209, dark cameras 204-205 and lit cameras 214-215 from 35 FIGS. 2a and 2b surrounding the stop-motion animation characters 702-703 and set 701. For clarity, the connections to devices 208-209, 204-205 and 214-215 have been omitted from FIGS. 7b-7e, but in they would be hooked up as illustrated in FIGS. 2a and 2b.) Dark cameras 204-205 and lit 40 cameras 214-215 are placed around the scene illustrated in FIG. 7b so as to capture whatever surfaces will be needed to be seen in the final animation. And then, rather than rapidly switching sync signals 221-223 at a high capture frame rate (e.g. 90 fps), the sync signals are switched very slowly, and in 45 fact may be switched by hand.

In one embodiment, the light panels 208-209 are left on while the animators adjust the positions of the characters 702-703, props or any changes to the set 701. Note that the light panels 208-209 could be any illumination source, 50 including incandescent lamps, because there is no requirement in stop-motion animation for rapidly turning on and off the illumination source. Once the characters 702-703, props and set 701 are in position for the next frame, lit cam sync signal 223 is triggered (by a falling edge transition in the 55 presently preferred embodiment) and all of the lit cameras 214-215 capture a frame for a specified duration based on the desired exposure time for the captured frames. In other embodiments, different cameras may have different exposure times based on individual exposure requirements.

Next, light panels 208-209 are turned off (either by sync signal 222 or by hand) and the lamps are allowed to decay until the scene is in complete darkness (e.g. incandescent lamps may take many seconds to decay). Then, dark cam sync signal 221 is triggered (by a falling edge transition in the 65 presently preferred embodiment) and all of the dark cameras 208-209 capture a frame of the random phosphorescent pat-

14

terns for a specified duration based on the desired exposure time for the captured frames. Once again, different cameras have different exposure times based on individual exposure requirements. As previously mentioned, in the case of very dim phosphorescent emissions, the exposure time may be quite long (e.g., a second or more). The upper limit of exposure time is primarily limited by the noise accumulation of the camera sensors. The captured dark frames are processed by data processing system 210 to produce 3D surface 207 and then to map the images captured by the lit cameras 214-215 onto the 3D surface 207 to create textured 3D surface 217. Then, the light panels, 208-9 are turned back on again, the characters 702-703, props and set 701 are moved again, and the process described in this paragraph is repeated until the entire shot is completed.

The resulting output is the successive frames of textured 3D surfaces of all of the characters 702-703, props and set 701 with areas of surfaces embedded or painted with phosphor that are in view of at least 2 dark cameras 204-205 at a non-oblique angle (e.g., <30 degrees from the optical axis of a camera). When these successive frames are played back at the desired frame rate (e.g., 24 fps), the animated scene will come to life, but unlike frames of a conventional stop-motion animation, the animation will be able to be viewed from any camera position, just by rendering the textured 3D surfaces from a chosen camera position. Also, if the camera position of the final animation is to be in motion during a frame sequence (e.g. if a camera is following a character 702-703), it is not necessary to have a physical camera moving in the scene. Rather, for each successive frame, the textured 3D surfaces of the scene are simply rendered from the desired camera position for that frame, using a 3D modeling/animation application software such as Maya (from Autodesk, Inc.).

In another embodiment, illustrated in FIGS. 7c-7e, some or all of the different characters 702-703, props, and/or sets 701 within a single stop-motion animation scene are shot separately, each in a configuration such as FIGS. 2a and 2b. For example, if a scene had man with leash 702 and his dog 703 walking down a city street set 701, the city street set 701, the man with leash 702, and the dog 703 would be shot individually, each with separate motion capture systems as illustrated in FIG. 7c (for city street set 701, FIG. 7d (for man with leash 702) and FIG. 7e (for dog 703) a. The stop-motion animation of the 2 characters 702-703 and 1 set 701 would each then be separately captured as individual textured 3D surfaces 217, in the manner described above. Then, with a 3D modeling and/ or animation application software the 2 characters 702-703 and 1 set 701 would be rendered together into a 3D scene. In one embodiment, the light panel 208-209 lighting the characters 702-703 and the set 701 could be configured to be the same, so the man with leash 702 and the dog 703 appear to be illuminated in the same environment as the set 701. In another embodiment, flat lighting (i.e. uniform lighting to minimize shadows and highlights) is used, and then lighting (including shadows and highlights) is simulated by the 3D modeling/ animation application software. Through the 3D modeling/ animation application software the animators will be able to see how the characters 702-703 look relative to each other and the set 701, and will also be able to look at the characters 60 702-703 and set 701 from any camera angle they wish, without having to move any of the physical cameras 204-205 or 214-215 doing the capture.

This approach provides significant advantages to stop-motion animation. The following are some of the advantages of this approach: (a) individual characters **702-703** may be manipulated individually without worrying about the animator bumping into another character **702-703** or the characters

15

702-703 bumping into each other, (b) the camera position of the rendered frames may be chosen arbitrarily, including having the camera position move in successive frames, (c) the rendered camera position can be one where it would not be physically possible to locate a camera 705 in a conventional 5 stop-motion configuration (e.g. directly between 2 characters 702-703 that are close together, where there is no room for a camera 705), (d) the lighting, including highlights and shadows can be controlled arbitrarily, including creating lighting situations that are not physically possible to realize (e.g. 10 making a character glow), (e) special effects can be applied to the characters 702-703 (e.g. a ghost character 702-703 can be made translucent when it is rendered into the scene), (f) a character 702-703 can remain in a physically stable position on the ground while in the scene it is not (e.g. a character 15 702-703 can be captured in an upright position, while it is rendered into the scene upside down in a hand stand, or rendered into the scene flying above the ground), (g) parts of the character 702-703 can be held up by supports that do not will not have to be removed from the shot later in postproduction), (h) detail elements of a character 702-703, like mouth positions when the character 702-703 is speaking, can be rendered in by the 3D modeling/animation application, so they do not have be attached and then removed from the 25 character 702-703 during the animation, (i) characters 702-703 can be rendered into computer-generated 3D scenes (e.g. the man with leash 702 and dog 703 can be animated as clay animations, but the city street set 701 can be a computergenerated scene), (j) 3D motion blur can be applied to the 30 objects as they move (or as the rendered camera position moves), resulting in a smoother perception of motion to the animation, and also making possible faster motion without the perception of jitter.

Additional Phosphorescent Phosphors

In another embodiment, different phosphors other than ZnS:Cu are used as pigments with dyes for fabrics or other non-skin objects. ZnS:Cu is the preferred phosphor to use for 40 skin applications because it is FDA-approved as a cosmetic pigment. But a large variety of other phosphors exist that, while not approved for use on the skin, are in some cases approved for use within materials handled by humans. One such phosphor is SrAl₂O₄:Eu²⁺, Dy³⁺. Another is SrAl₂O₄: 45 Eu²⁺. Both phosphors have a much longer afterglow than ZnS:Cu for a given excitation.

Optimizing Phosphorescent Emission

Many phosphors that phosphoresce in visible light spectra are charged more efficiently by ultraviolet light than by visible light. This can be seen in chart 800 of FIG. 8 which show approximate excitation and emission curves of ZnS:Cu (which we shall refer to hereafter as "zinc sulfide") and vari- 55 ous light sources. In the case of zinc sulfide, its excitation curve 811 spans from about 230 nm to 480 nm, with its peak at around 360 nm. Once excited by energy in this range, its phosphorescence curve 812 spans from about 420 nm to 650 nm, producing a greenish glow. The zinc sulfide phosphores- 60 cence brightness 812 is directly proportional to the excitation energy 811 absorbed by the zinc sulfide. As can be seen by excitation curve 811, zinc sulfide is excited with varying degrees of efficiency depending on wavelength. For example, at a given brightness from an excitation source (i.e. in the case 65 of the presently preferred embodiment, light energy from light panels 208-209) zinc sulfide will absorb only 30% of the

16

energy at 450 nm (blue light) that it will absorb at 360 nm (UVA light, commonly called "black light"). Since it is desirable to get the maximum phosphorescent emission 812 from the zinc sulfide (e.g. brighter phosphorescence will allow for smaller lens apertures and longer depth of field), clearly it is advantageous to excite the zinc sulfide with as much energy as possible. The light panels 208-209 can only produce up to a certain level of light output before the light becomes uncomfortable for the performers. So, to maximize the phosphorescent emission output of the zinc sulfide, ideally the light panels 208-209 should output light at wavelengths that are the most efficient for exciting zinc sulfide.

Other phosphors that may be used for non-skin phosphorescent use (e.g. for dyeing fabrics) also are excited best by ultraviolet light. For example, SrAl₂O₄:Eu²⁺, Dy³⁺ and SrAl₂O₄:Eu²⁺ are both excited more efficiently with ultraviolet light than visible light, and in particular, are excited quite efficiently by UVA (black light).

As can be seen in FIG. 3, a requirement for a light source have phosphor on them, and as such will not be captured (and 20 used for the light panels 208-209 is that the light source can transition from completely dark to fully lit very quickly (e.g. on the order of a millisecond or less) and from fully lit to dark very quickly (e.g. also on the order of a millisecond or less). Most LEDs fulfill this requirement quite well, typically turning on an off on the order of microseconds. Unfortunately, though, current LEDs present a number of issues for use in general lighting. For one thing, LEDs currently available have a maximum light output of approximately 35 W. The BL-43F0-0305 from Lamina Ceramics, 120 Hancock Lane, Westampton, N.J. 08060 is one such RGB LED unit. For another, currently LEDs have special power supply requirements (in the case of the BL-43F0-0305, different voltage supplies are need for different color LEDs in the unit). In addition, current LEDs require very large and heavy heatsinks 35 and produce a great deal of heat. Each of these issues results in making LEDs expensive and somewhat unwieldy for lighting an entire motion capture stage for a performance. For example, if 3500 Watts were needed to light a stage, 100 35 W LED units would be needed.

> But, in addition to these disadvantages, the only very bright LEDs currently available are white or RGB LEDs. In the case of both types of LEDs, the wavelengths of light emitted by the LED does not overlap with wavelengths where the zinc sulfide is efficiently excited. For example, in FIG. 8 the emission curve 823 of the blue LEDs in the BL-43F0-0305 LED unit is centered around 460 nm. It only overlaps with the tail end of the zinc sulfide excitation curve 811 (and the Red and Green LEDs don't excite the zinc sulfide significantly at all). So, even if the blue LEDs are very bright (to the point where they 50 are as bright as is comfortable to the performer), only a small percentage of that light energy will excite the zinc sulfide, resulting in a relatively dim phosphorescence. Violet and UVA ("black light") LEDs do exist, which would excite the zinc sulfide more efficiently, but they only currently are available at very low power levels, on the order of 0.1 Watts. To achieve 3500 Watts of illumination would require 35,000 such 0.1 Watt LEDs, which would be quite impractical and prohibitively expensive.

Fluorescent Lamps as a Flashing Illumination Source

Other lighting sources exist that output light at wavelengths that are more efficiently absorbed by zinc sulfide. For example, fluorescent lamps (e.g. 482-S9 from Kino-Flo, Inc. 2840 North Hollywood Way, Burbank, Calif. 91505) are available that emit UVA (black light) centered around 350 nm with an emission curve similar to 821, and Blue/violet fluo-

17

rescent lamps (e.g. 482-S10-S from Kino-Flo) exist that emit bluish/violet light centered around 420 nm with an emission curve similar to 822. The emission curves 821 and 822 are much closer to the peak of the zinc sulfide excitation curve **811**, and as a result the light energy is far more efficiently 5 absorbed, resulting in a much higher phosphorescent emission 812 for a given excitation brightness. Such fluorescent bulbs are quite inexpensive (typically \$15/bulb for a 48" bulb), produce very little heat, and are very light weight. They are also available in high wattages. A typical 4-bulb fluorescent fixture produces 160 Watts or more. Also, theatrical fixtures are readily available to hold such bulbs in place as staging lights. (Note that UVB and UVC fluorescent bulbs are also available, but UVB and UVC exposure is known to present health hazards under certain conditions, and as such 15 would not be appropriate to use with human or animal performers without suitable safety precautions.)

The primary issue with using fluorescent lamps is that they are not designed to switch on and off quickly. In fact, ballasts (the circuits that ignite and power fluorescent lamps) typically 20 turn the lamps on very slowly, and it is common knowledge that fluorescent lamps may take a second or two until they are fully illuminated.

FIG. 9 shows a diagrammatic view of a prior art fluorescent lamp. The elements of the lamp are contained within a sealed 25 glass bulb 910 which, in this example, is in the shape of a cylinder (commonly referred to as a "tube"). The bulb contains an inert gas 940, typically argon, and a small amount of mercury 930. The inner surface of the bulb is coated with a phosphor 920. The lamp has 2 electrodes 905-906, each of 30 which is coupled to a ballast through connectors 901-904. When a large voltage is applied across the electrodes 901-904, some of the mercury in the tube changes from a liquid to a gas, creating mercury vapor, which, under the right electrical circumstances, emits ultraviolet light. The ultraviolet light 35 excites the phosphor coating the inner surface of the bulb. The phosphor then fluoresces light at a higher wavelength than the excitation wavelength. A wide range of phosphors are available for fluorescent lamps with different wavelengths. For example, phosphors that are emissive at UVA wavelengths 40 and all visible light wavelengths are readily available off-theshelf from many suppliers.

Standard fluorescent ballasts are not designed to switch fluorescent lamps on and off quickly, but it is possible to modify an existing ballast so that it does. FIG. 10 is a circuit 45 diagram of a prior art 27 Watt fluorescent lamp ballast 1002 modified with an added sync control circuit 1001 of the present invention.

For the moment, consider only the prior art ballast circuit 1002 of FIG. 10 without the modification 1001. Prior art 50 ballast 1002 operates in the following manner: A voltage doubler circuit converts 120VAC from the power line into 300 volts DC. The voltage is connected to a half bridge oscillator/ driver circuit, which uses two NPN power transistors 1004-1005. The half bridge driver, in conjunction with a multi- 55 winding transformer, forms an oscillator. Two of the transformer windings provide high drive current to the two power transistors 1004-1005. A third winding of the transformer is in line with a resonant circuit, to provide the needed feedback to maintain oscillation. The half bridge driver gen- 60 erates a square-shaped waveform, which swings from +300 volts during one half cycle, to zero volts for the next half cycle. The square wave signal is connected to an "LC" (i.e. inductor-capacitor) series resonant circuit. The frequency of the circuit is determined by the inductance Lres and the 65 capacitance Cres. The fluorescent lamp 1003 is connected across the resonant capacitor. The voltage induced across the

18

resonant capacitor from the driver circuit provides the needed high voltage AC to power the fluorescent lamp 1003. To kick the circuit into oscillation, the base of the power transistor 1005 is connected to a simple relaxation oscillator circuit. Current drawn from the 300 v supply is routed through a resistor and charges up a 0.1 uF capacitor. When the voltage across the capacitor reaches about 20 volts, a DIAC (a bilateral trigger diode) quickly switches and supplies power transistor 1005 with a current spike. This spike kicks the circuit into oscillation.

Synchronization control circuit 1001 is added to modify the prior art ballast circuit 1002 described in the previous paragraph to allow rapid on-and-off control of the fluorescent lamp 1003 with a sync signal. In the illustrated embodiment in FIG. 10, a sync signal, such as sync signal 222 from FIG. 2, is electrically coupled to the SYNC+ input. SYNC- is coupled to ground. Opto-isolator NEC PS2501-1 isolates the SYNC+ and SYNC- inputs from the high voltages in the circuit. The opto-isolator integrated circuit consists of a light emitting diode (LED) and a phototransistor. The voltage differential between SYNC+ and SYNC- when the sync signal coupled to SYNC+ is at a high level (e.g. ≥2.0V) causes the LED in the opto-isolator to illuminate and turn on the phototransistor in the opto-isolator. When this phototransistor is turned on, voltage is routed to the gate of an n-channel MOS-FET Q1 (Zetex Semiconductor ZVN4106F DMOS FET). MOSFET Q1 functions as a low resistance switch, shorting out the base-emitter voltage of power transistor 1005 to disrupt the oscillator, and turn off fluorescent lamp 1003. To turn the fluorescent lamp back on, the sync signal (such as 222) is brought to a low level (e.g. <0.8V), causing the LED in the opto-isolator to turn off, which turns off the opto-isolator phototransistor, which turns off MOSFET Q1 so it no longer shorts out the base-emitter voltage of power transistor 1005. This allows the kick start circuit to initialize ballast oscillation, and the fluorescent lamp 1003 illuminates.

This process repeats as the sync signal coupled to SYNC+ oscillates between high and low level. The synch control circuit 1001 combined with prior art ballast 1002 will switch fluorescent lamp 1003 on and off reliably, well in excess of 120 flashes per second. It should be noted that the underlying principles of the invention are not limited to the specific set of circuits illustrated in FIG. 10.

FIG. 11 shows the light output of fluorescent lamp 1003 when synch control circuit 1001 is coupled to prior art ballast 1002 and a sync signal 222 is coupled to circuit 1001 as described in the previous paragraph. Traces 1110 and 1120 are oscilloscope traces of the output of a photodiode placed on the center of the bulb of a fluorescent lamp using the prior art ballast circuit 1002 modified with the sync control circuit 1001 of the present invention. The vertical axis indicates the brightness of lamp 1003 and the horizontal axis is time. Trace 1110 (with 2 milliseconds/division) shows the light output of fluorescent lamp 1003 when sync signal 222 is producing a 60 Hz square wave. Trace 1120 (with the oscilloscope set to 1 millisecond/division and the vertical brightness scale reduced by 50%) shows the light output of lamp 1003 under the same test conditions except now sync signal 222 is producing a 250 Hz square wave. Note that the peak 1121 and minimum 1122 (when lamp 1003 is off and is almost completely dark) are still both relatively flat, even at a much higher switching frequency. Thus, the sync control circuit 1001 modification to prior art ballast 1002 produces dramatically different light output than the unmodified ballast 1002, and makes it possible to achieve on and off switching of fluorescent lamps at high frequencies as required by the motion capture system illustrated in FIG. 2 with timing similar to that of FIG. 3.

19

Although the modified circuit shown in FIG. 10 will switch a fluorescent lamp 1003 on and off rapidly enough for the requirements of a motion capture system such as that illustrated in FIG. 2, there are certain properties of fluorescent lamps that may be modified for use in a practical motion 5 capture system.

FIG. 12 illustrates one of these properties. Traces 1210 and 1220 are the oscilloscope traces of the light output of a General Electric Gro and Sho fluorescent lamp 1003 placed in circuit 1002 modified by circuit 1001, using a photodiode placed on the center of the bulb. Trace 1210 shows the light output at 1 millisecond/division, and Trace 1220 shows the light output at 20 microseconds/division. The portion of the waveform shown in Trace 1220 is roughly the same as the dashed line area 1213 of Trace 1210. Sync signal 222 is 15 coupled to circuit 1002 as described previously and is producing a square wave at 250 Hz. Peak level 1211 shows the light output when lamp 1003 is on and minimum 1212 shows the light output when lamp 1003 is off. While Trace 1210 shows the peak level 1211 and minimum 1212 as fairly flat, 20 upon closer inspection with Trace 1220, it can be seen that when the lamp 1003 is turned off, it does not transition from fully on to completely off instantly. Rather, there is a decay curve of approximately 200 microseconds (0.2 milliseconds) in duration. This is apparently due to the decay curve of the 25 phosphor coating the inside of the fluorescent bulb (i.e. when the lamp 1003 is turned off, the phosphor continues to fluoresce for a brief period of time). So, when sync signal 222 turns off the modified ballast 1001-1002, unlike LED lights which typically switch off within a microsecond, fluorescent 30 lamps take a short interval of time until they decay and become dark.

There exists a wide range of decay periods for different brands and types of fluorescent lamps, from as short as 200 microseconds, to as long as over a millisecond. To address 35 this property of fluorescent lamps, one embodiment of the invention adjusts signals 221-223. This embodiment will be discussed shortly.

Another property of fluorescent lamps that impacts their usability with a motion capture system such as that illustrated 40 in FIG. 2 is that the electrodes within the bulb are effectively incandescent filaments that glow when they carry current through them, and like incandescent filaments, they continue to glow for a long time (often a second or more) after current is removed from them. So, even if they are switched on and off 45 rapidly (e.g. at 90 Hz) by sync signal 222 using ballast 1002 modified by circuit 1001, they continue to glow for the entire dark interval 302. Although the light emitted from the fluorescent bulb from the glowing electrodes is very dim relative to the fully illuminated fluorescent bulb, it is still is a signifi- 50 cant amount of light, and when many fluorescent bulbs are in use at once, together the electrodes add up to a significant amount of light contamination during the dark interval 302, where it is advantageous for the room to be as dark as pos-

FIG. 13 illustrates one embodiment of the invention which addresses this problem. Prior art fluorescent lamp 1350 is shown in a state 10 milliseconds after the lamp as been shut off. The mercury vapor within the lamp is no longer emitting ultraviolet light and the phosphor lining the inner surface of 60 the bulb is no longer emitting a significant amount of light. But the electrodes 1351-1352 are still glowing because they are still hot. This electrode glowing results in illuminated regions 1361-1362 near the ends of the bulb of fluorescent lamp 1350.

Fluorescent lamp 1370 is a lamp in the same state as prior art lamp 1350, 10 milliseconds after the bulb 1370 has been

20

shut off, with its electrodes 1371-1372 still glowing and producing illuminated regions 1381-1382 near the ends of the bulb of fluorescent lamp 1370, but unlike prior art lamp 1350, wrapped around the ends of lamp 1370 is opaque tape 1391 and 1392 (shown as see-through with slanted lines for the sake of illustration). In the presently preferred embodiment black gaffers' tape is used, such as 4" P-665 from Permacel, A Nitto Denko Company, US Highway No. 1, P.O. Box 671, New Brunswick, N.J. 08903. The opaque tape 1391-1392 serves to block almost all of the light from glowing electrodes 1371-1372 while blocking only a small amount of the overall light output of the fluorescent lamp when the lamp is on during lit interval 301. This allows the fluorescent lamp to become much darker during dark interval 302 when being flashed on and off at a high rate (e.g. 90 Hz). Other techniques can be used to block the light from the glowing electrodes, including other types of opaque tape, painting the ends of the bulb with an opaque paint, or using an opaque material (e.g. sheets of black metal) on the light fixtures holding the fluorescent lamps so as to block the light emission from the parts of the fluorescent lamps containing electrodes.

Returning now to the light decay property of fluorescent lamps illustrated in FIG. 12, if fluorescent lamps are used for light panels 208-209, the synchronization signal timing shown in FIG. 3 will not produce optimal results because when Light Panel sync signal 222 drops to a low level on edge 332, the fluorescent light panels 208-209 will take time to become completely dark (i.e. edge 342 will gradually drop to dark level). If the Dark Cam Sync Signal triggers the grayscale cameras 204-205 to open their shutters at the same time as edge 322, the grayscale camera will capture some of the scene lit by the afterglow of light panels 208-209 during its decay interval. Clearly, FIG. 3's timing signals and light output behavior is more suited for light panels 208-209 using a lighting source like LEDs that have a much faster decay than fluorescent lamps.

Synchronization Timing for Fluorescent Lamps

FIG. 14 shows timing signals which are better suited for use with fluorescent lamps and the resulting light panel 208-209 behavior (note that the duration of the decay curve 1442 is exaggerated in this and subsequent timing diagrams for illustrative purposes). The rising edge 1434 of sync signal 222 is roughly coincident with rising edge 1414 of lit cam sync signal 223 (which opens the lit camera 214-215 shutters) and with falling edge 1424 of dark cam sync signal 223 (which closes the dark camera 204-205 shutters). It also causes the fluorescent lamps in the light panels 208-209 to illuminate quickly. During lit time interval 1401, the lit cameras 214-215 capture a color image illuminated by the fluorescent lamps, which are emitting relatively steady light as shown by light output level 1443.

At the end of lit time interval 1401, the falling edge 1432 of sync signal 222 turns off light panels 208-209 and is roughly coincident with the rising edge 1412 of lit cam sync signal 223, which closes the shutters of the lit cameras 214-215. Note, however, that the light output of the light panels 208-209 does not drop from lit to dark immediately, but rather slowly drops to dark as the fluorescent lamp phosphor decays as shown by edge 1442. When the light level of the fluorescent lamps finally reaches dark level 1441, dark cam sync signal 221 is dropped from high to low as shown by edge 1422, and this opens the shutters of dark cameras 204-205. This way the dark cameras 204-205 only capture the emissions from the phosphorescent makeup, paint or dye, and do not capture the reflection of light from any objects illuminated by the fluorescent.

21

rescent lamps during the decay interval 1442. So, in this embodiment the dark interval 1402 is shorter than the lit interval 1401, and the dark camera 204-205 shutters are open for a shorter period of time than the lit camera 214-205 shutters.

Another embodiment is illustrated in FIG. 15 where the dark interval 1502 is longer than the lit interval 1501. The advantage of this embodiment is it allows for a longer shutter time for the dark cameras 204-205. In this embodiment, light panel sync signal 222 falling edge 1532 occurs earlier which 10 causes the light panels 208-209 to turn off. Lit cam sync signal 223 rising edge 1512 occurs roughly coincident with falling edge 1532 and closes the shutters on the lit cameras 214-5. The light output from the light panel 208-209 fluorescent lamps begins to decay as shown by edge 1542 and finally 15 reaches dark level 1541. At this point dark cam sync signal 221 is transitions to a low state on edge 1522, and the dark cameras 204-205 open their shutters and capture the phosphorescent emissions.

Note that in the embodiments shown in both FIGS. 14 and 20 15 the lit camera 214-215 shutters were only open while the light output of the light panel 208-209 fluorescent lamps was at maximum. In another embodiment, the lit camera 214-215 shutters can be open during the entire time the fluorescent lamps are emitting any light, so as to maximize the amount of 25 light captured. In this situation, however, the phosphorescent makeup, paint or dye in the scene will become more prominent relative to the non-phosphorescent areas in the scene because the phosphorescent areas will continue to emit light fairly steadily during the fluorescent lamp decay while the 30 non-phosphorescent areas will steadily get darker. The lit cameras 214-215 will integrate this light during the entire time their shutters are open.

In yet another embodiment the lit cameras 214-215 leave their shutters open for some or all of the dark time interval 35 1502. In this case, the phosphorescent areas in the scene will appear very prominently relative to the non-phosphorescent areas since the lit cameras 214-215 will integrate the light during the dark time interval 1502 with the light from the lit time interval 1501.

Because fluorescent lamps are generally not sold with specifications detailing their phosphor decay characteristics, it is necessary to determine the decay characteristics of fluorescent lamps experimentally. This can be readily done by adjusting the falling edge 1522 of sync signal 221 relative to 45 the falling edge 1532 of sync signal 222, and then observing the output of the dark cameras 204-205. For example, in the embodiment shown in FIG. 15, if edge 1522 falls too soon after edge 1532 during the fluorescent light decay 1542, then non-phosphorescent objects will be captured in the dark cam- 50 eras 204-205. If the edge 1522 is then slowly delayed relative to edge 1532, the non-phosphorescent objects in dark camera 204-205 will gradually get darker until the entire image captured is dark, except for the phosphorescent objects in the image. At that point, edge 1522 will be past the decay interval 55 1542 of the fluorescent lamps. The process described in this paragraph can be readily implemented in an application on a general-purpose computer that controls the output levels of sync signals 221-223.

In another embodiment the decay of the phosphor in the 60 fluorescent lamps is such that even after edge 1532 is delayed as long as possible after 1522 to allow for the dark cameras 204-205 to have a long enough shutter time to capture a bright enough image of phosphorescent patterns in the scene, there is still a small amount of light from the fluorescent lamp 65 illuminating the scene such that non-phosphorescent objects in the scene are slightly visible. Generally, this does not

22

present a problem for the pattern processing techniques described in the co-pending applications identified above. So long as the phosphorescent patterns in the scene are substantially brighter than the dimly-lit non-fluorescent objects in the scene, the pattern processing techniques will be able to adequately correlate and process the phosphorescent patterns and treat the dimly lit non-fluorescent objects as noise.

Synchronizing Cameras with Lower Frame Rates than the Light Panel Flashing Rate

In another embodiment the lit cameras 214-215 and dark cameras 204-205 are operated at a lower frame rate than the flashing rate of the light panels 208-209. For example, the capture frame rate may be 30 frames per second (fps), but so as to keep the flashing of the light panels 208-209 about the threshold of human perception, the light panels 208-209 are flashed at 90 flashes per second. This situation is illustrated in FIG. 16. The sync signals 221-3 are controlled the same as the are in FIG. 15 for lit time interval 1601 and dark time interval 1602 (light cycle 0), but after that, only light panel 208-9 sync signal 222 continues to oscillate for light cycles 1 and 2. Sync signals 221 and 223 remain in constant high state 1611 and 1626 during this interval. Then during light cycle 3, sync signals 221 and 223 once again trigger with edges 1654 and 1662, opening the shutters of lit cameras 214-215 during lit time interval 1604, and then opening the shutters of dark cameras 204-205 during dark time interval 1605.

In another embodiment where the lit cameras 214-215 and
dark cameras 204-205 are operated at a lower frame rate than
the flashing rate of the light panels 208-209, sync signal 223
causes the lit cameras 214-215 to open their shutters after
sync signal 221 causes the dark cameras 204-205 to open their
shutters. This is illustrated in FIG. 17. An advantage of this
timing arrangement over that of FIG. 16 is the fluorescent
lamps transition from dark to lit (edge 1744) more quickly
than they decay from lit to dark (edge 1742). This makes it
possible to abut the dark frame interval 1702 more closely to
the lit frame interval 1701. Since captured lit textures are
often used to be mapped onto 3D surfaces reconstructed from
dark camera images, the closer the lit and dark captures occur
in time, the closer the alignment will be if the captured object
is in motion.

In another embodiment where the lit cameras 214-215 and dark cameras 204-205 are operated at a lower frame rate than the flashing rate of the light panels 208-209, the light panels 208-209 are flashed with varying light cycle intervals so as to allow for longer shutter times for either the dark cameras 204-205 or lit cameras 214-215, or to allow for longer shutters times for both cameras. An example of this embodiment is illustrated in FIG. 18 where the light panels 208-209 are flashed at 3 times the frame rate of cameras 204-205 and 214-215, but the open shutter interval 1821 of the dark cameras 204-205 is equal to almost half of the entire frame time 1803. This is accomplished by having light panel 208-209 sync signal 222 turn off the light panels 208-209 for a long dark interval 1802 while dark cam sync signal 221 opens the dark shutter for the duration of long dark interval 1802. Then sync signal 222 turns the light panels 208-209 on for a brief lit interval 1801, to complete light cycle 0 and then rapidly flashes the light panels 208-209 through light cycles 1 and 2. This results in the same number of flashes per second as the embodiment illustrated in FIG. 17, despite the much longer dark interval 1802. The reason this is a useful configuration is that the human visual system will still perceive rapidly flashing lights (e.g. at 90 flashes per second) as being lit continuously, even if there are some irregularities to the flashing cycle

23

times. By varying the duration of the lit and dark intervals of the light panels 208-209, the shutter times of either the dark cameras 204-205, lit cameras 214-215 or both can be lengthened or shortened, while still maintaining the human perception that light panels 208-209 are continuously lit.

High Aggregate Frame Rates from Cascaded Cameras

FIG. 19 illustrates another embodiment where lit cameras 10 1941-1946 and dark cameras 1931-1936 are operated at a lower frame rate than the flashing rate of the light panels 208-209. FIG. 19 illustrates a similar motion capture system configuration as FIG. 2a, but given space limitations in the diagram only the light panels, the cameras, and the synchro- 15 nization subsystem is shown. The remaining components of FIG. 2a that are not shown (i.e. the interfaces from the cameras to their camera controllers and the data processing subsystem, as well as the output of the data processing subsystem) are a part of the full configuration that is partially 20 shown in FIG. 19, and they are coupled to the components of FIG. 19 in the same manner as they are to the components of FIG. 2a. Also, FIG. 19 shows the Light Panels 208-209 in their "lit" state. Light Panels 208-209 can be switched off by sync signal 222 to their "dark" state, in which case performer 25 202 would no longer be lit and only the phosphorescent pattern applied to her face would be visible, as it is shown in

FIG. 19 shows 6 lit cameras 1941-1946 and 6 dark cameras 1931-1936. In the presently preferred embodiment color 30 cameras are used for the lit cameras 1941-1946 and grayscale cameras are used for the dark camera 1931-1936, but either type could be used for either purpose. The shutters on the cameras 1941-1946 and 1931-1936 are driven by sync signals 1921-1926 from sync generator PCI card 224. The sync generator card is installed in sync generator PC 220, and operates as previously described. (Also, in another embodiment it may be replaced by using the parallel port outputs of sync generator PC 220 to drive sync signals 1921-1926, and in this case, for example, bit 0 of the parallel port would drive sync signals 1921-1926, respectively.)

Unlike the previously described embodiments, where there is one sync signal **221** for the dark cameras and one sync signal **223** for the lit cameras, in the embodiment illustrated in 45 FIG. **19**, there are 3 sync signals **1921-1923** for the dark cameras and 3 sync signals **1924-1926** for the dark cameras. The timing for these sync signals **1921-1926** is shown in FIG. **20**. When the sync signals **1921-1926** are in a high state they cause the shutters of the cameras attached to them to be 50 closed, when the sync signals are in a low state, they cause the shutters of the cameras attached to them to be open.

In this embodiment, as shown in FIG. 20, the light panels 208-209 are flashed at a uniform 90 flashes per second, as controlled by sync signal 222. The light output of the light 55 panels 208-209 is also shown, including the fluorescent lamp decay 2042. Each camera 1931-1936 and 1941-1946 captures images at 30 frames per second (fps), exactly at a 1:3 ratio with the 90 flashes per second rate of the light panels. Each camera captures one image per each 3 flashes of the light panels, and their shutters are sequenced in a "cascading" order, as illustrated in FIG. 20. A sequence of 3 frames is captured in the following manner:

Sync signal 222 transitions with edge 2032 from a high to low state 2031. Low state 2031 turns off light panels 208-209, 65 which gradually decay to a dark state 2041 following decay curve 2042. When the light panels are sufficiently dark for the

24

purposes of providing enough contrast to separate the phosphorescent makeup, paint, or dye from the non-phosphorescent surfaces in the scene, sync signal 1921 transitions to low state 2021. This causes dark cameras 1931-1932 to open their shutters and capture a dark frame. After the time interval 2002, sync signal 222 transitions with edge 2034 to high state 2033 which causes the light panels 208-209 to transition with edge 2044 to lit state 2043. Just prior to light panels 208-209 becoming lit, sync signal 1921 transitions to high state 2051 closing the shutter of dark cameras 1931-1932. Just after the light panels 208-209 become lit, sync signal 1924 transition to low state 2024, causing the shutters on the lit cameras 1941-1942 to open during time interval 2001 and capture a lit frame. Sync signal 222 transitions to a low state, which turns off the light panels 208-9, and sync signal 1924 transitions to a high state at the end of time interval 2001, which closes the shutters on lit cameras 1941-1942.

The sequence of events described in the preceding paragraphs repeats 2 more times, but during these repetitions sync signals 1921 and 1924 remain high, keeping their cameras shutters closed. For the first repetition, sync signal 1922 opens the shutter of dark cameras 1933-1934 while light panels 208-209 are dark and sync signal 1925 opens the shutter of lit cameras 1943-1944 while light panels 208-209 are lit. For the second repetition, sync signal 1923 opens the shutter of dark cameras 1935-1936 while light panels 208-209 are dark and sync signal 1926 opens the shutter of lit cameras 1945-1946 while light panels 208-209 are lit.

Then, the sequence of events described in the prior 2 paragraphs continues to repeat while the motion capture session illustrated in FIG. 19 is in progress, and thus a "cascading" sequence of camera captures allows 3 sets of dark and 3 sets of lit cameras to capture motion at 90 fps (i.e. equal to the light panel flashing rate of 90 flashes per second), despite the fact each cameras is only capturing images at 30 fps. Because each camera only captures 1 of every 3 frames, the captured frames stored by the data processing system 210 are then interleaved so that the stored frame sequence at 90 fps has the frames in proper order in time. After that interleaving operation is complete, the data processing system will output reconstructed 3D surfaces 207 and textured 3D surfaces 217 at 90 fps.

Although the "cascading" timing sequence illustrated in FIG. 20 will allow cameras to operate at 30 fps while capturing images at an aggregate rate of 90 fps, it may be desirable to be able to switch the timing to sometimes operate all of the cameras 1921-1923 and 1924-1926 synchronously. An example of such a situation is for the determination of the relative position of the cameras relative to each other. Precise knowledge of the relative positions of the dark cameras 1921-1923 is used for accurate triangulation between the cameras, and precise knowledge of the position of the lit cameras 1924-1926 relative to the dark cameras 1921-1923 is used for establishing how to map the texture maps captured by the lit cameras 1924-1926 onto the geometry reconstructed from the images captured by the dark cameras 1921-1923. One prior art method (e.g. that is used to calibrate cameras for the motion capture cameras from Motion Analysis Corporation) to determine the relative position of fixed cameras is to place a known object (e.g. spheres on the ends of a rods in a rigid array) within the field of view of the cameras, and then synchronously (i.e. with the shutters of all cameras opening and closing simultaneously) capture successive frames of the image of that known object by all the cameras as the object is in motion. By processing successive frames from all of the cameras, it is possible to calculate the relative position of the cameras to each other. But for this method to work, all of the

25

cameras need to be synchronized so that they capture images simultaneously. If the camera shutters do not open simultaneously, then when each non-simultaneous shutter opens, its camera will capture the moving object at a different position in space than other cameras whose shutters open at different times. This will make it more difficult (or impossible) to precisely determine the relative position of all the cameras to each other.

FIG. 21 illustrates in another embodiment how the sync signals 1921-6 can be adjusted so that all of the cameras 10 1931-1936 and 1941-1946 open their shutters simultaneously. Sync signals 1921-1926 all transition to low states 2121-2126 during dark time interval 2102. Although the light panels 208-209 would be flashed 90 flashes a second, the cameras would be capturing frames synchronously to each 15 other at 30 fps. (Note that in this case, the lit cameras 1941-1946 which, in the presently preferred embodiment are color cameras, also would be capturing frames during the dark interval 2102 simultaneously with the dark cameras 1931-**1936.**) Typically, this synchronized mode of operation would 20 be done when a calibration object (e.g. an array of phosphorescent spheres) was placed within the field of view of some or all of the cameras, and potentially moved through successive frames, usually before or after a motion capture of a performer. In this way, the relative position of the cameras 25 could determined while the cameras are running synchronously at 30 fps, as shown in FIG. 21. Then, the camera timing would be switched to the "cascading" timing shown in FIG. 20 to capture a performance at 90 fps. When the 90 fps frames are reconstructed by data processing system 210, then camera 30 position information, determined previously (or subsequently) to the 90 fps capture with the synchronous mode time shown in FIG. 21, will be used to both calculate the 3D surface 207 and map the captured lit frame textures onto the 3D surface to create textured 3D surface 217

When a scene is shot conventionally using prior art methods and cameras are capturing only 2D images of that scene, the "cascading" technique to use multiple slower frame rate cameras to achieve a higher aggregate frame rate as illustrated in FIGS. 19 and 20 will not produce high-quality results. The 40 reason for this is each camera in a "cascade" (e.g. cameras 1931, 1933 and 1935) will be viewing the scene from a different point of view. If the captured 30 fps frames of each camera are interleaved together to create a 90 fps sequence of successive frames in time, then when the 90 fps sequence is 45 viewed, it will appear to jitter, as if the camera was rapidly jumping amongst multiple positions. But when slower frame rate cameras are "cascaded" to achieve a higher aggregate frame rate as illustrate in FIGS. 19 and 20 for the purpose capturing the 3D surfaces of objects in a scene, as described 50 herein and in combination with the methods described in the co-pending applications, the resulting 90 fps interleaved 3D surfaces 207 and textured 3D surfaces 217 do not exhibit jitter at all, but rather look completely stable. The reason is the particular position of the cameras 1931-1936 and 1941-1946 55 does not matter in the reconstruction 3D surfaces, just so long as the at least a pair of dark cameras 1931-1936 during each dark frame interval 2002 has a non-oblique view (e.g. <30 degrees) of the surface area (with phosphorescent makeup, paint or dye) to be reconstructed. This provides a significant 60 advantage over conventional prior art 2D motion image capture (i.e. commonly known as video capture), because typically the highest resolution sensors commercially available at a given time have a lower frame rate than commercially available lower resolution sensors. So, 2D motion image capture at high resolutions is limited to the frame rate of a single high resolution sensor. A 3D motion surface capture at high

26

resolution, under the principles described herein, is able to achieve n times the frames rate of a single high resolution sensor, where n is the number of camera groups "cascaded" together, per the methods illustrated in FIGS. 19 and 20.

Color Mapping of Phosphor Brightness

Ideally, the full dynamic range, but not more, of dark cameras 204-205 should be utilized to achieve the highest quality pattern capture. For example, if a pattern is captured that is too dark, noise patterns in the sensors in cameras 204-205 may become as prominent as captured patterns, resulting in incorrect 3D reconstruction. If a pattern is too bright, some areas of the pattern may exceed the dynamic range of the sensor, and all pixels in such areas will be recorded at the maximum brightness level (e.g. 255 in an 8-bit sensor), rather than at the variety or brightness levels that actually make up that area of the pattern. This also will result in incorrect 3D reconstruction. So, prior to capturing a pattern, per the techniques described herein, it is advantageous to try to make sure the brightness of the pattern throughout is not too dark, nor too bright (e.g. not reaching the maximum brightness level of the camera sensor).

When phosphorescent makeup is applied to a performer, or when phosphorescent makeup, paint or dye is applied to an object, it is difficult for the human eye to evaluate whether the phosphor application results in a pattern captured by the dark cameras 204-205 that is bright enough in all locations or too bright in some locations. FIG. 22 image 2201 shows a cylinder covered in a random pattern of phosphor. It is difficult, when viewing this image on a computer display (e.g. an LCD monitor) to determine precisely if there are parts of the pattern that are too bright (e.g. location 2220) or too dark (e.g. location 2210). There are many reasons for this. Computer monitors often do not have the same dynamic range as a sensor (e.g. a computer monitor may only display 128 unique gray levels, while the sensor captures 256 gray levels). The brightness and/or contrast may not be set correctly on the monitor. Also, the human eye may have trouble determining what constitutes a maximum brightness level because the brain may adapt to the brightness it sees, and consider whatever is the brightest area on the screen to be the maximum brightness. For all of these reasons, it is helpful to have an objective measure of brightness that humans can readily evaluate when applying phosphorescent makeup, paint or dye. Also, it is helpful to have an objective measure brightness as the lens aperture and/or gain is adjusted on dark cameras 204-205 and/or the brightness of the light panels 208-209 is adjusted.

Image 2202 shows such an objective measure. It shows the same cylinder as image 2201, but instead of showing the brightness of each pixel of the image as a grayscale level (in this example, from 0 to 255), it shows it as a color. Each color represents a range of brightness. For example, in image 2202 blue represents brightness ranges 0-32, orange represents brightness ranges 192-223 and dark red represents brightness ranges 224-255. Other colors represent other brightness ranges. Area 2211, which is blue, is now clearly identifiable as an area that is very dark, and area 2221, which is dark red, is now clearly identifiable as an area that is very bright. These determinations can be readily made by the human eye, even if the dynamic range of the display monitor is less than that of the sensor, or if the display monitor is incorrectly adjusted, or if the brain of the observer adapts to the brightness of the display. With this information the human observer can change the application of phosphorescent makeup, dye or paint. The

27

human observer can also adjust the aperture and/or the gain setting on the cameras 204-205 and/or the brightness of the light panels 208-209.

In one embodiment image 2202 is created by application software running on one camera controller computer 225 and 5 is displayed on a color LCD monitor attached to the camera controller computer 225. The camera controller computer 225 captures a frame from a dark camera 204 and places the pixel values of the captured frame in an array in its RAM. For example, if the dark cameras 204 is a 640×480 grayscale 10 camera with 8 bits/pixel, then the array would be a 640×480 array of 8-bit bytes in RAM. Then, the application takes each pixel value in the array and uses it as an index into a lookup table of colors, with as many entries as the number of possible pixel values. With 8 bits/pixel, the lookup table has 256 15 entries. Each of the entries in the lookup table is pre-loaded (by the user or the developer of the application) with the desired Red, Green, Blue (RGB) color value to be displayed for the given brightness level. Each brightness level may be given a unique color, or a range of brightness levels can share 20 a unique color. For example, for image 2202, lookup table entries 0-31 are all loaded with the RGB value for blue, entries 192-223 are loaded with the RGB value for orange and entries 224-255 are loaded with the RGB value for dark red. Other entries are loaded with different RGB color values. The 25 application uses each pixel value from the array (e.g. 640x 480 of 8-bit grayscale values) of the captured frame as an index into this color lookup take, and forms a new array (e.g. 640×480 of 24-bit RGB values) of the looked-up colors. This new array of look-up colors is then displayed, producing a 30 color image such as 1102.

If a color camera (either lit camera 214 or dark camera 204) is used to capture the image to generate an image such as 2202, then one step is first performed after the image is captured and before it is processed as described in the pre- 35 ceding paragraph. The captured RGB output of the camera is stored in an array in camera controller computer 225 RAM (e.g. 640×480 with 24 bits/pixel). The application running on camera controller computer 225 then calculates the average brightness of each pixel by averaging the Red, Green and 40 Blue values of each pixel (i.e. Average=(R+G+B)/3), and places those averages in a new array (e.g. 640×480 with 8 bits/pixel). This array of Average pixel brightnesses (the "Average array") will soon be processed as if it were the pixel output of a grayscale camera, as described in the prior para- 45 graph, to produce a color image such as 2202. But, first there is one more step: the application examines each pixel in the captured RGB array to see if any color channel of the pixel (i.e. R, G, or B) is at a maximum brightness value (e.g. 255). If any channel is, then the application sets the value in the 50 Average array for that pixel to the maximum brightness value (e.g. 255). The reason for this is that it is possible for one color channel of a pixel to be driven beyond maximum brightness (but only output a maximum brightness value), while the other color channels are driven by relatively dim brightness. 55 This may result in an average calculated brightness for that pixel that is a middle-range level (and would not be considered to be a problem for good-quality pattern capture). But, if any of the color channels has been overdriven in a given pixel, then that will result in an incorrect pattern capture. So, by 60 setting the pixel value in the Average array to maximum brightness, this produces a color image 2202 where that pixel is shown to be at the highest brightness, which would alert a human observer of image 1102 of the potential of a problem for a high-quality pattern capture.

It should be noted that the underlying principles of the invention are not limited to the specific color ranges and color

28

choices illustrated in FIG. 22. Also, other methodologies can be used to determine the colors in 2202, instead of using only a single color lookup table. For example, in one embodiment the pixel brightness (or average brightness) values of a captured image is used to specify the hue of the color displayed. In another embodiment, a fixed number of lower bits (e.g. 4) of the pixel brightness (or average brightness) values of a captured image are set to zeros, and then the resulting numbers are used to specify the hue for each pixel. This has the effect of assigning each single hue to a range of brightnesses.

Embodiments of the invention may include various steps as set forth above. The steps may be embodied in machine-executable instructions which cause a general-purpose or special-purpose processor to perform certain steps. Various elements which are not relevant to the underlying principles of the invention such as computer memory, hard drive, input devices, have been left out of the figures to avoid obscuring the pertinent aspects of the invention.

Alternatively, in one embodiment, the various functional modules illustrated herein and the associated steps may be performed by specific hardware components that contain hardwired logic for performing the steps, such as an application-specific integrated circuit ("ASIC") or by any combination of programmed computer components and custom hardware components.

Elements of the present invention may also be provided as a machine-readable medium for storing the machine-executable instructions. The machine-readable medium may include, but is not limited to, flash memory, optical disks, CD-ROMs, DVD ROMs, RAMs, EPROMs, EEPROMs, magnetic or optical cards, propagation media or other type of machine-readable media suitable for storing electronic instructions. For example, the present invention may be downloaded as a computer program which may be transferred from a remote computer (e.g., a server) to a requesting computer (e.g., a client) by way of data signals embodied in a carrier wave or other propagation medium via a communication link (e.g., a modem or network connection).

Throughout the foregoing description, for the purposes of explanation, numerous specific details were set forth in order to provide a thorough understanding of the present system and method. It will be apparent, however, to one skilled in the art that the system and method may be practiced without some of these specific details. For example, although certain specific mixtures and types of phosphorescent material were described above, the underlying principles of the invention may be employed with various alternate mixtures and/or any type of material which exhibits phosphorescent properties. Accordingly, the scope and spirit of the present invention should be judged in terms of the claims which follow.

What is claimed is:

- 1. A system comprising:
- a synchronization signal generator to generate one or more synchronization signals;
- one or more fluorescent lamps configured to strobe on and off responsive to a first one of the one or more synchronization signals, the fluorescent lamps illuminating makeup, markers, paint or dye applied to a subject for a motion capture session; and
- a first plurality of cameras having shutters strobed synchronously with the strobing of the light source to capture sequences of images of the makeup, markers, paint or dye as the subject moves or changes facial expressions during a performance, wherein the shutters are open when the light source is off and the shutters are closed when the light source is on.

29

- 2. The system as in claim 1 further comprising: an image processing device generating motion data repre-
- senting the movement of the subject using the tracked movement of the makeup, markers, paint or dye.
- 3. The system as in claim 1 wherein the subject is a per- 5 former and wherein makeup, markers, paint or dye is applied in a random pattern to the performer's face.
- 4. The system as in claim 1 wherein the markers are applied at specified areas of the performer's body.
 - **5**. The system as in claim **1** further comprising:
 - a second plurality of cameras having shutters strobed synchronously with the strobing of the fluorescent lamps to capture images of the performer, wherein the shutters of the second plurality of cameras are open when the fluoplurality of cameras are closed when the fluorescent
- 6. The system as in claim 5 wherein the first plurality of cameras are grayscale cameras and the second plurality of cameras are color cameras.
 - 7. The system as in claim 1 further comprising:
 - a ballast circuit electrically coupled to a power source and to at least one of the one or more fluorescent lamps, the ballast circuit configured to provide power to the fluorescent lamp to turn the fluorescent lamp on; and
 - a synchronization control circuit electrically coupled to the synchronization signal generator and to the ballast circuit, the synchronization control circuit to receive one of the synchronization signals from the synchronization signal generator and to responsively cause the ballast $^{\,30}$ circuit to turn the fluorescent lamp on and off.
- **8**. The system as in claim **1** wherein strobing the shutters comprises opening the shutters for a first period of time and closing the shutters for a second period of time, the second period of time.
- 9. The system as in claim 8 wherein the first period of time is longer than the second period of time.
- 10. The system as in claim 1 wherein the camera shutters system.
- 11. The system as in claim 5 further comprising an image processing device separating the images captured by the first plurality of cameras from the images captured by the second plurality of cameras to generate two separate sets of image 45
- 12. The system as in claim 5 wherein the first plurality of cameras have a sensitivity which is different from the second plurality of cameras.
- 13. The system as in claim 5 wherein the second plurality of cameras are controlled to open their shutters for a relatively shorter period of time when the fluorescent lamps are on; and the first plurality of cameras are controlled to open their shutters for a relatively longer period of time when the fluorescent lamps are off.
- 14. The system as in claim 5 wherein the second plurality of cameras comprise color cameras and the first plurality of cameras comprise grayscale cameras.

30

- 15. The system as in claim 14 wherein the grayscale cameras have a relatively higher sensitivity than the color cam-
- **16**. The system as in claim **14** wherein two different synchronization signals are used to control the shutters of the color and grayscale cameras.
- 17. The system as in claim 16 wherein the different synchronization signals are 180 degrees out of phase.
- **18**. The system as in claim **1** wherein strobing the shutters 10 further comprises:
 - opening the shutters for a period of time when the fluorescent lamps are on to capture images of the performer's face and/or body.
- 19. The system as in claim 1 wherein after being opened to rescent lamps are on and the shutters of the second 15 capture a first non-lit image with the fluorescent lamps off, the shutters of the first plurality of cameras are closed and then opened again when the fluorescent lamps are on to capture a lit image with the fluorescent lamps on, and then closed and then opened again with the fluorescent lamps off to capture a second non-lit image.
 - 20. The system as in claim 18 wherein strobing the shutters comprises opening the shutters for a first period of time and closing the shutters for a second period of time, wherein the first period of time is not equal to the second period of time.
 - 21. The system as in claim 19 further comprising:
 - an image processing device to separate the image frames captured while the fluorescent lamps are off from the image frames captured when the fluorescent lamps are on to generate two separate sets of image data.
 - 22. The system as in claim 18 wherein sensitivity of the cameras is alternated between capturing the image frames when the fluorescent lamps are on and the image frames when the fluorescent lamps are off.
- 23. The system as in claim 20 wherein the shutters are period of time being of a different duration than the first 35 opened for a relatively shorter period of time when the fluorescent lamps are on; and
 - wherein the shutters are opened for a relatively longer period of time when the fluorescent lamps are off.
- 24. The system as in claim 1 wherein the makeup, paint or are controlled by synchronization signals from a computer 40 dye comprises phosphorescent makeup, paint, dye or other material.
 - 25. The system as in claim 24 where the fluorescent lamps are used to charge the phosphorescent makeup, paint, dye or
 - 26. The system as in claim 5 wherein the strobing of first plurality of cameras and the fluorescent lamps are timed to ensure that the shutters of the first plurality of cameras do not open until the light emanated from the fluorescent panels reaches a minimum threshold value.
 - 27. The system as in claim 1 wherein the makeup or dye includes phosphor.
 - 28. The system as in claim 27 wherein the phosphor comprises ZnS:Cu.
 - 29. The system as in claim 27 wherein the phosphor com-55 prises SrAl2O4:Eu²⁺, Dy³⁺.
 - 30. The system as in claim 27 wherein the phosphor comprises SrAl₂O₄:Eu²⁺.

Exhibit 6

US008207963B2

(12) United States Patent

Cotter et al.

(10) Patent No.: US 8,2

US 8,207,963 B2

(45) **Date of Patent:**

Jun. 26, 2012

(54) SYSTEM AND METHOD FOR PERFORMING MOTION CAPTURE AND IMAGE RECONSTRUCTION

(75) Inventors: Tim S. Cotter, Sunnyvale, CA (US);

Stephen G. Perlman, Palo Alto, CA

(US)

(73) Assignee: Onlive, Inc., Palo Alto, CA (US)

(*) Notice: Subject to any disclaimer, the term of this

patent is extended or adjusted under 35 U.S.C. 154(b) by 1146 days.

- 1.2.1.2. (2) 27 22 12

(21) Appl. No.: 11/888,377

(22) Filed: Jul. 31, 2007

(65) Prior Publication Data

US 2009/0174701 A1 Jul. 9, 2009

Related U.S. Application Data

(60) Provisional application No. 60/834,771, filed on Jul. 31, 2006.

(51) Int. Cl. *G06T 15/00* (2011.01) *G06T 17/00* (2006.01)

(52) **U.S. Cl.** 345/419; 345/420

(56) References Cited

U.S. PATENT DOCUMENTS

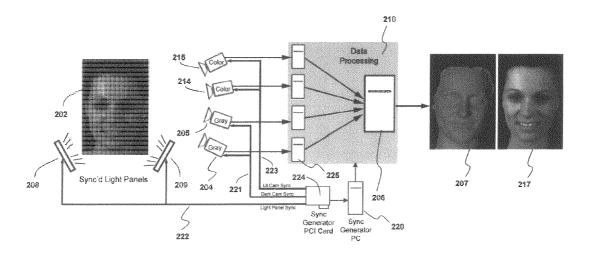
5,969,822 6,072,496	A A	*	10/1999 6/2000	Arata Fright et al. Guenter et al. Edwards et al.	356/608 345/419		
(Continued)							

FOREIGN PATENT DOCUMENTS

EP	2002/0130867		9/2009
WO	WO 2006/011153		2/2006
WO	WO 2006011153 A	? *	2/2006

OTHER PUBLICATIONS

Brian Curless, Marc Levoy, "A Volumetric Method for Building Complex Models from Range Images," 1996, Proceedings of the 23rd Annual Conference on Computer Graphics and Interactive Techniques, pp. 303-312.*


(Continued)

Primary Examiner — Daniel Hajnik (74) Attorney, Agent, or Firm — Blakely Sokoloff Taylor & Zafman LLP

(57) ABSTRACT

A system and method are described for performing motion capture on a subject. For example, a computer-implemented method according to one embodiment of the invention comprise: creating a scalar field for the three-dimensional (3-D) capture volume of the subject; generating a surface mesh for the scalar field; retaining good vertices and removing bad vertices of the surface mesh; and storing the good vertices for use in subsequent reconstruction of the motion of the subject. Another computer-implemented method comprises: capturing a series of image frames of the subject over a period of time each frame each frame having a plurality of vertices defining a captured surface of the subject; establishing a reference frame having one or more of the plurality of vertices; performing frame-to-frame tracking to identify vertices within the N'th frame based on the (N-1)'th frame or an earlier frame; and performing reference-to-frame tracking to identify vertices within the N'th frame based on the reference frame to counter potential drift between the frames. Yet another computer-implemented method comprises: capturing motion capture data including a plurality of images of the N vertices during a motion capture session; retrospectively identifying X of the N vertices to track across the plurality of images where X<N; and tracking the X vertices across the plurality of images.

26 Claims, 33 Drawing Sheets (6 of 33 Drawing Sheet(s) Filed in Color)

US 8,207,963 B2

Page 2

U.S. PATENT DOCUMENTS

7,356,164	B2 *	4/2008	Aliaga et al 382/103
7,720,259	B2 *	5/2010	Gordon et al 382/103
2004/0104935	A1*	6/2004	Williamson et al 345/757
2004/0119716	A1*	6/2004	Park et al 345/473
2006/0077258	A1	4/2006	Allen et al.
2006/0127836	A1*	6/2006	Wen 433/24
2006/0203096	A1	9/2006	LaSalle et al.
2007/0091085	A1*	4/2007	Wang et al 345/420

OTHER PUBLICATIONS

Brett Allen, Brian Curless, Zoran Popovic, "Articulated Body Deformation from Range Scan Data," Jul. 2002, ACM Transactions on Graphics (TOG), vol. 21, No. 3, pp. 612-619.*

Guodong Liu, Jingdan Zhang, Wei Wang, and Leonard McMillan. 2006. Human motion estimation from a reduced marker set. In Proceedings of the 2006 symposium on Interactive 3D graphics and games (I3D '06). Mar. 14-17, 2006. ACM, New York, NY, USA, 35-42. DOI=10.1145/1111411.1111418 http://doi.acm.org/10.1145/1111411.11111418.*

Sundaresan, A., Chellappa, R.: Multi-camera tracking of articulated human motion using motion and shape cues. In: Narayanan, P.J., Nayar, S.K., Shum, H-Y. (eds.) ACCV 2006. LNCS, vol. 3852, pp. 131-140. Springer, Heidelberg (Jan. 13-16, 2006).*

Hasenfratz, Jean-Marc., Lapierre, M., Gascuel, Jean-Dominique., and Boyer, E. 2003. Real-Time Capture, Reconstruction and Insertion into Virtual World of Human Actors. In Vision, Video and Graphics, Elsevier, Eurographics.*

Patent Cooperation Treaty, PCT/US2007/017188, "Notification Concerning Transmittal of International Preliminary Report on Patentability and Written Opinion of the International Searching Authority", mailed Feb. 12, 2009, 9 pages.

"Extended European Search Report", European Patent Office—Munich Germany, mailed Jun. 18, 2010, pp. 1-12.

Anguelov, Dragomir, et al., "SCAPE; Shape Completion and Animation of People", *ACM Transactions on Graphics*, [Online] vol. 24, No. 3, New York, NY, http://doi.acm.org/10.1145/1073204. 1073207, *section 3, paragraph 2: p. 410* *section 3 paragraph 3; p. 410*, (Jul. 1, 2005), 408-416.

Muller, H., et al., "Visualization of Implicit Surfaces Using Adaptive Tethrahedrizations", *Scientific Visualization Conference*, Dagstuhl, Germany Jun. 9-13, 1997, Piscataway, NJ, IEEE, Jun. 9, 1997 IEEE., (Jun. 9, 1997), 243-2433.

Simmons, K. P., "Body Measurement Techniques: A Comparison of Three-Dimensional Body Scanning and Physical Anthropometric Methods", URL:http://www.tx.ncsu.edu/3dbodyscan/pdf_docs/microsoft%20word%20alpaper2.pdf>, (Jan. 12, 2010), p. 11; Table 3

Wheeler, M. D., "Automatic Modeling and Localization for Object Recognition", URL:http://citeseerx.ist.psu.edu/viewdoc/download-?doi=10.1.1.71.3802&rep=rep1&type=pdf>, (Oct. 25, 1996), p. 27, paragraph 2.

Allen, Bret, et al., "Articulated Body Deformation from Range Scan Data", *ACM Transactions on Graphics (TOG)*, vol. 21, No. 3, (Jul. 2002), 612-619.

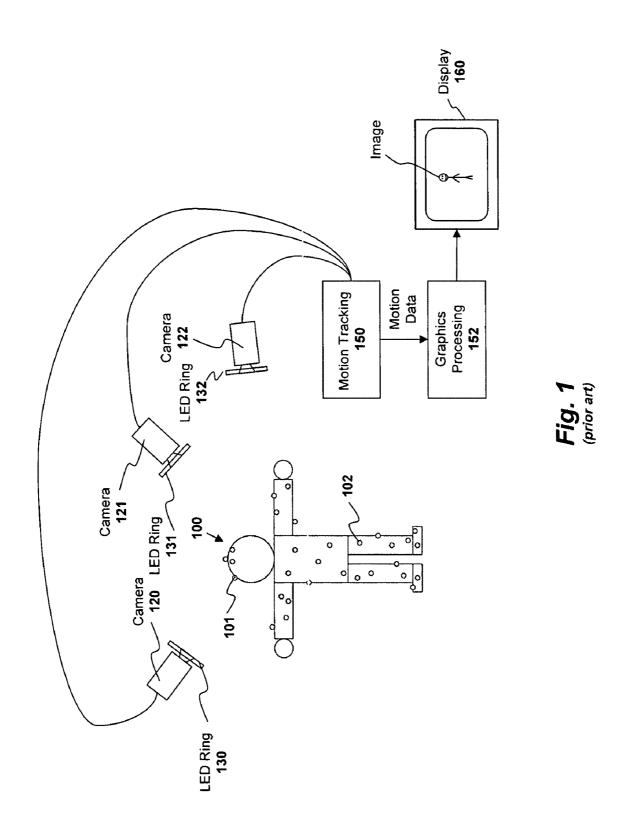
Curless, Brian, et al., "A Volumetric Method for Building Complex Models from Range Images", *Proceedings of the 23rd Annual Conference on Computer Graphics and Interactive Techniques*, (1996),

PCT Search Report mailed Jul. 11, 2008, 4 Pages.

Written Opinion mailed Jul. 11, 2008, 7 Pages.

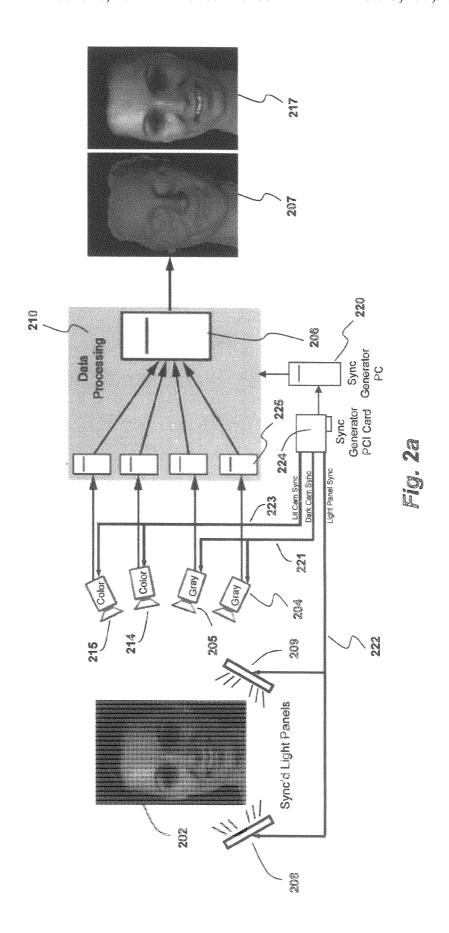
Co-pending application No. P364XPCT, application No. PCT/US 10/37318, "Notification Concerning Transmittal of International Preliminary Report on Patentability and Written Opinion of the International Searching Authority", mailed Aug. 17, 2010, 8 pages.

Curless, B., et al., "A Volumetric Method for Building Complex Models From Range Images", *Computer Graphics Proceedings (SIGGRAPH)*, New Orleans, Aug. 4-9, 1996, [Computer Graphics Proceedings SIGGRAPH], New York, NY ACM, US,, (Aug. 4, 1996), 303-312.

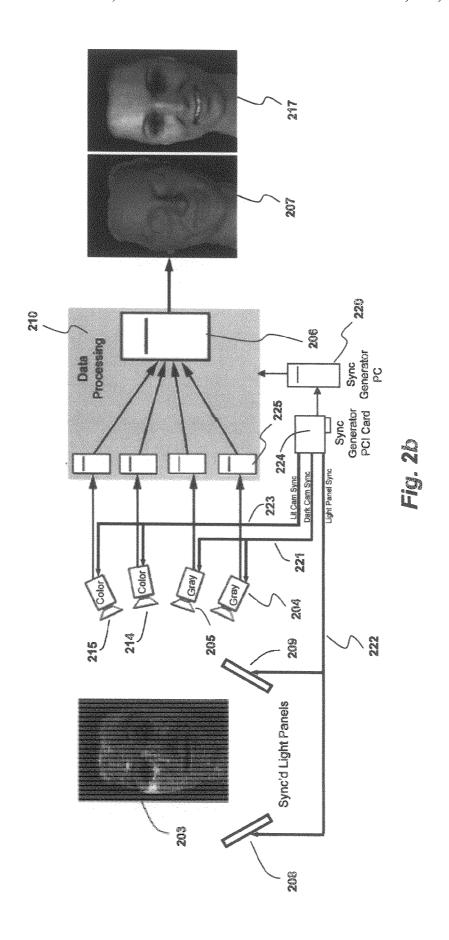

Co-pending New Zealand Patent Application No. 574599, First examination report issued Jul. 8, 2010, 2 pages.

European Patent Application No. 07836403.1, Office Action mailed Jun. 1, 2011, 4 pages.

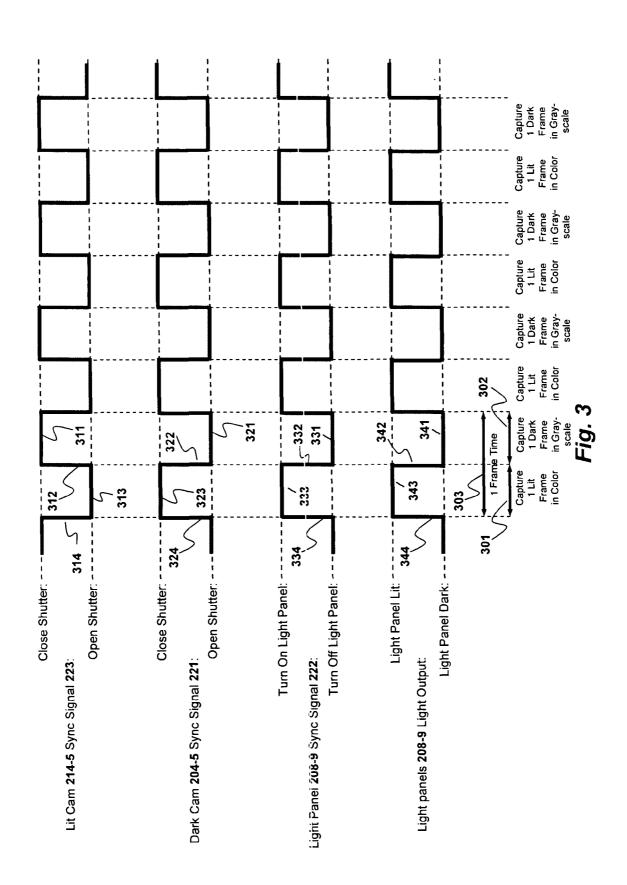
* cited by examiner


Jun. 26, 2012

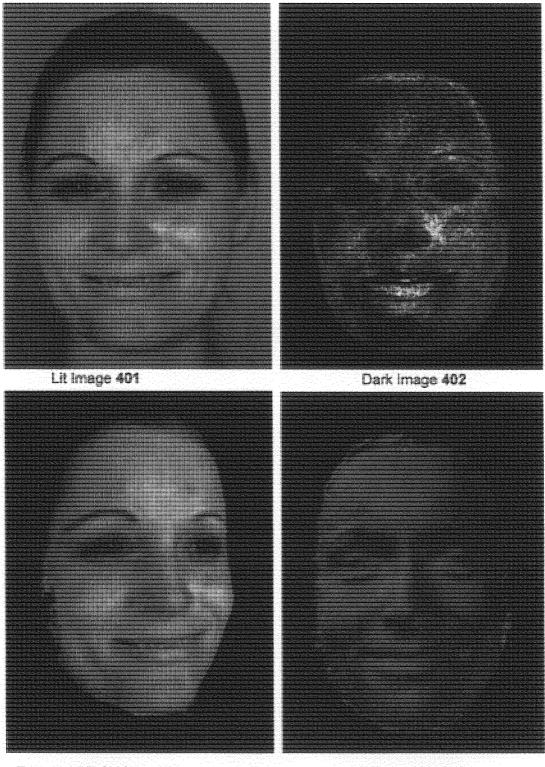
Sheet 1 of 33


Jun. 26, 2012

Sheet 2 of 33


Jun. 26, 2012

Sheet 3 of 33


Jun. 26, 2012

Sheet 4 of 33

Jun. 26, 2012

Sheet 5 of 33

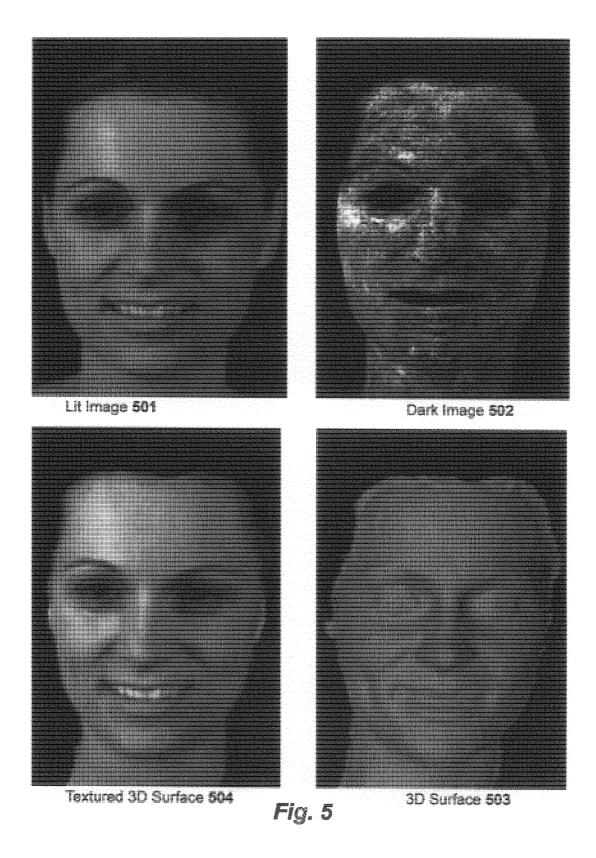

Textured 3D Surface 404

Fig. 4

3D Surface 403

Jun. 26, 2012

Sheet 6 of 33

Jun. 26, 2012

Sheet 7 of 33

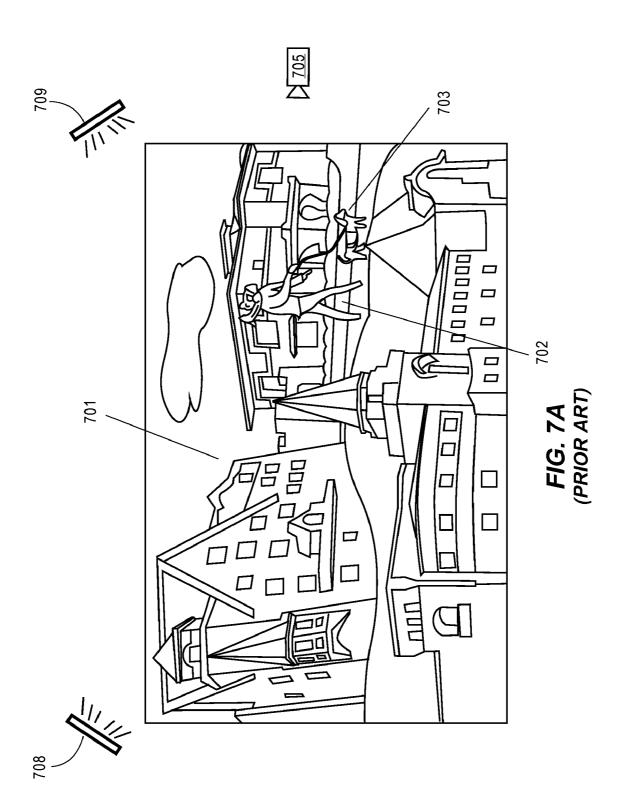
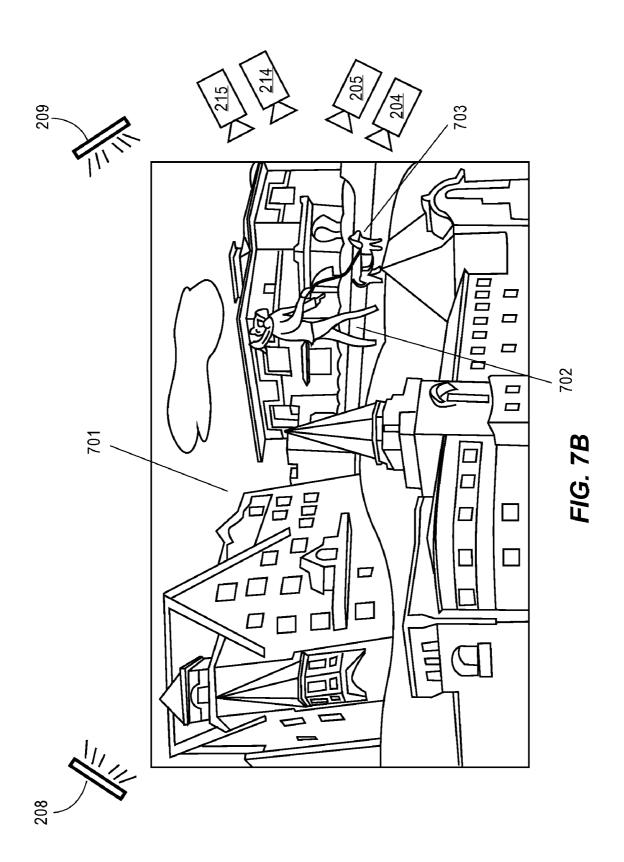
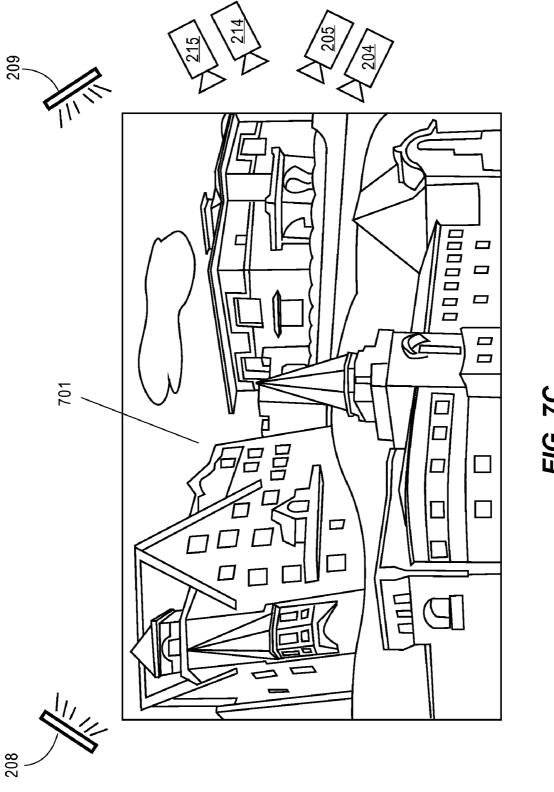



Fig. 6


Jun. 26, 2012

Sheet 8 of 33


Jun. 26, 2012

Sheet 9 of 33

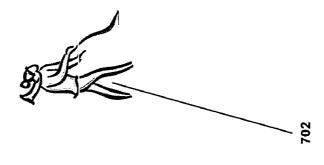
Jun. 26, 2012

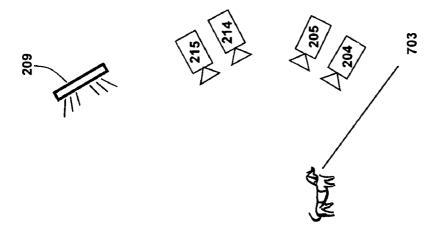
Sheet 10 of 33

Jun. 26, 2012

Sheet 11 of 33

US 8,207,963 B2

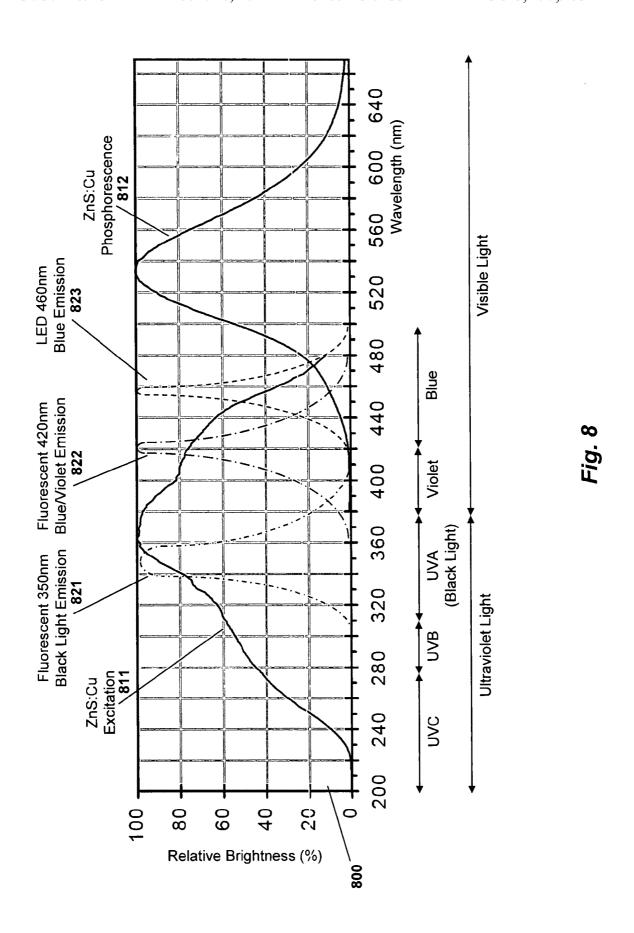



Fig. 7d

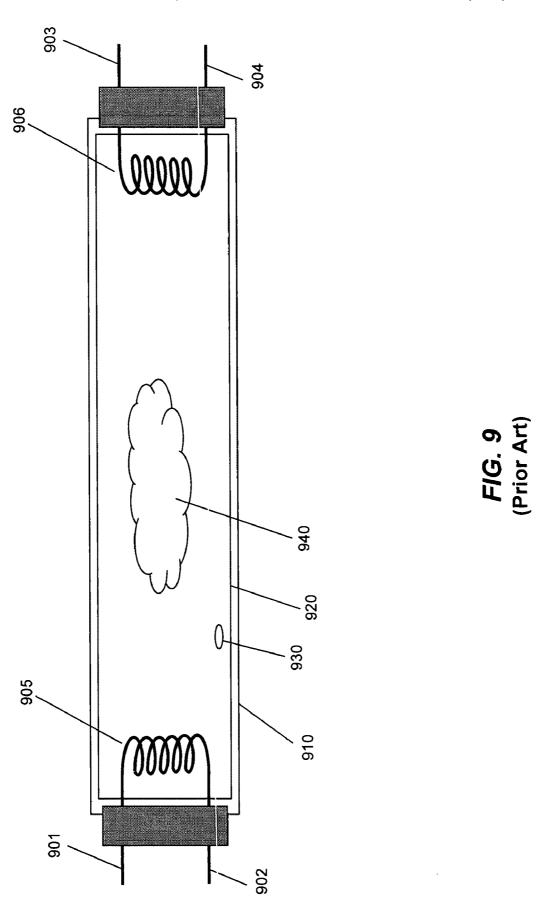
Jun. 26, 2012

Sheet 12 of 33

US 8,207,963 B2

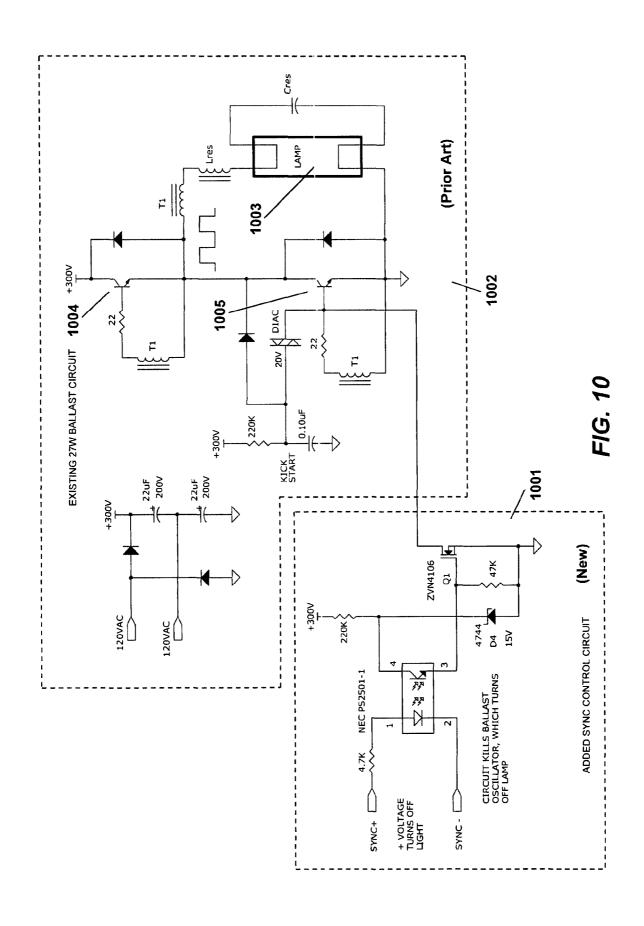


∹ig. 7e

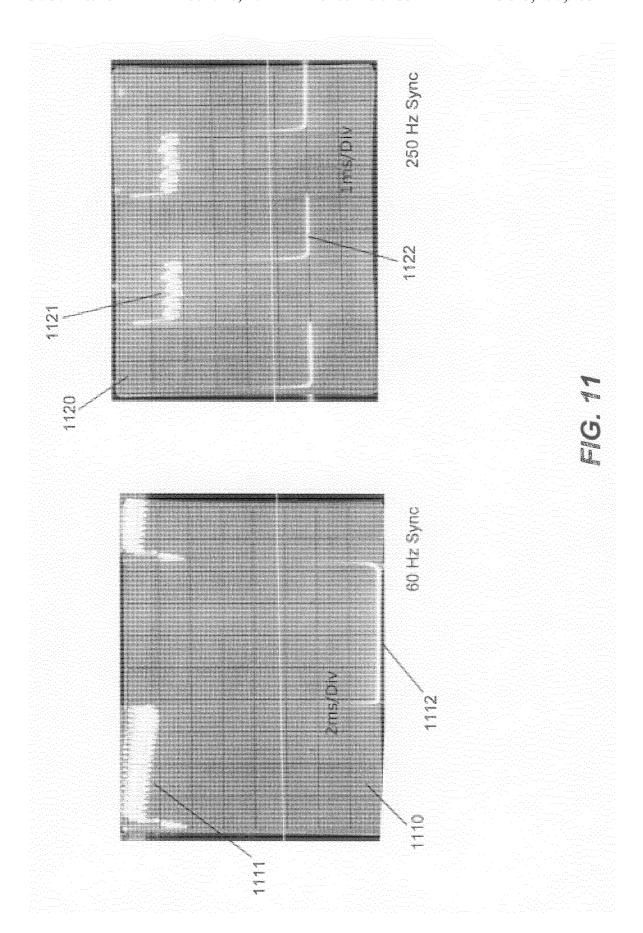


Jun. 26, 2012

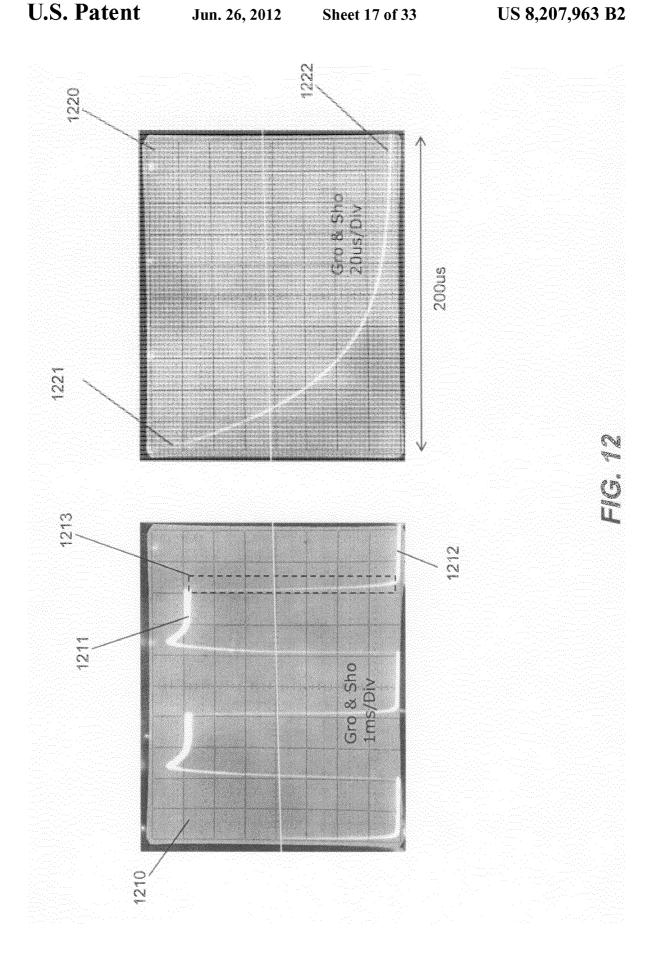
Sheet 13 of 33



U.S. Patent Jun. 26, 2012 Sheet 14 of 33 US 8,207,963 B2

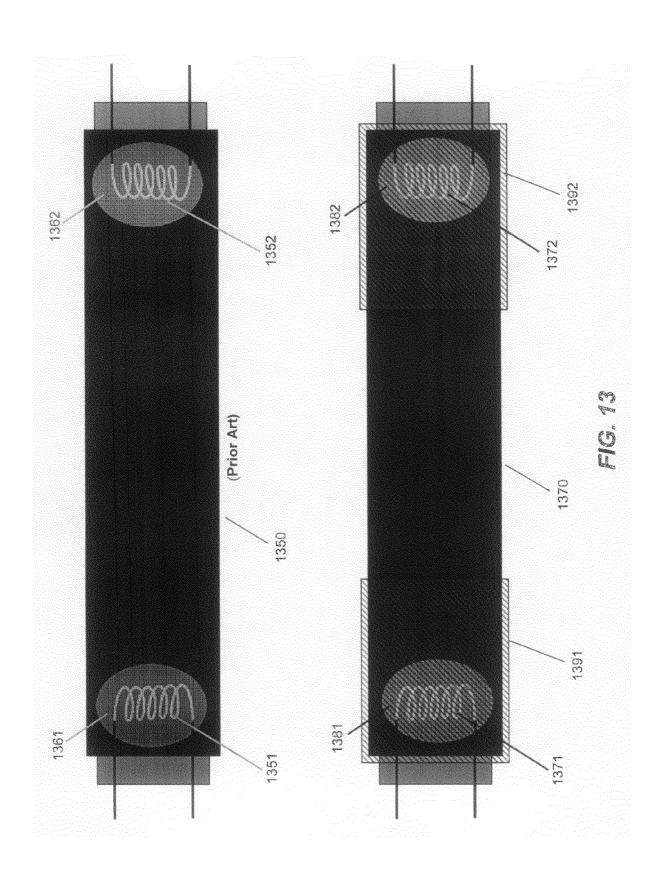

Jun. 26, 2012

Sheet 15 of 33

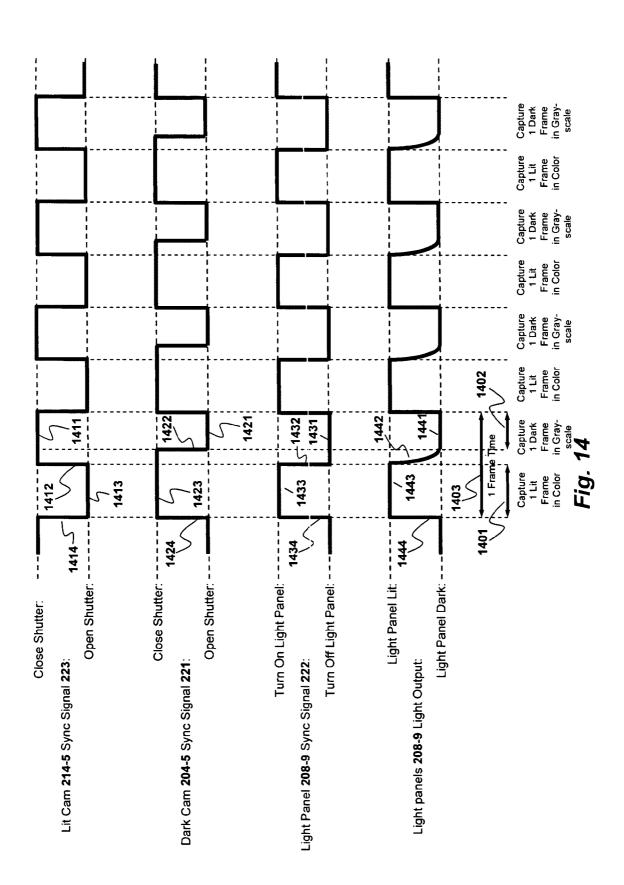


Jun. 26, 2012

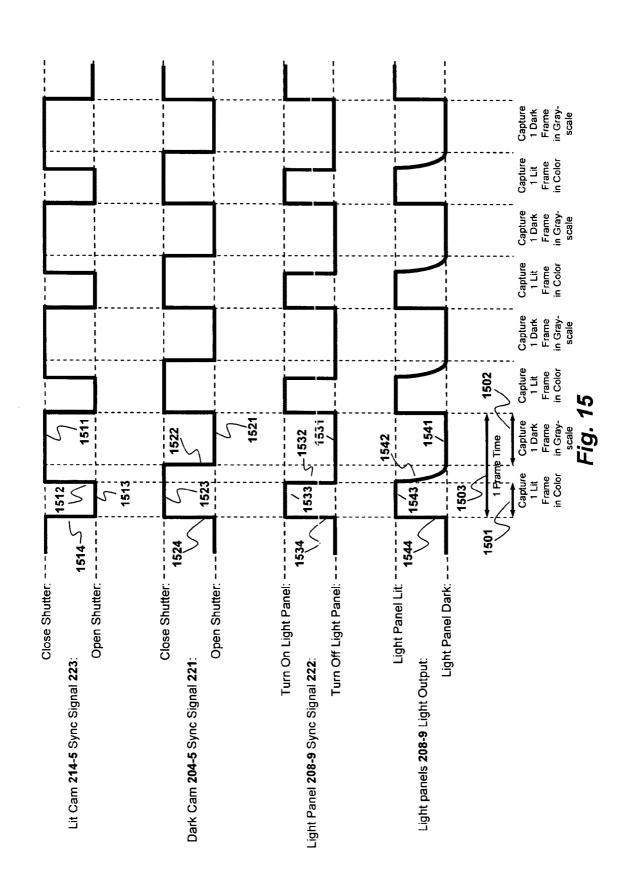
Sheet 16 of 33



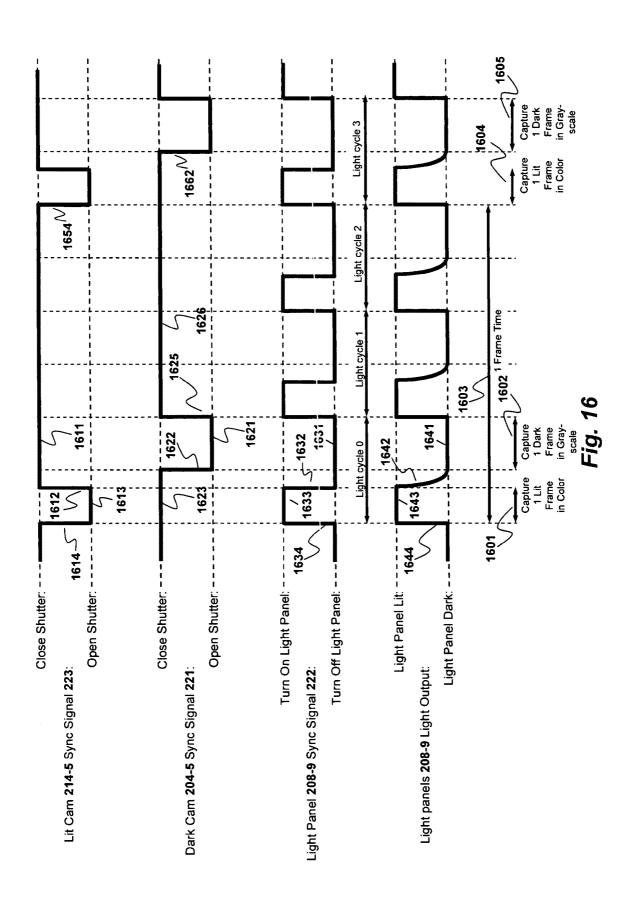
U.S. Patent Jun. 26, 2012 **Sheet 17 of 33**


Jun. 26, 2012

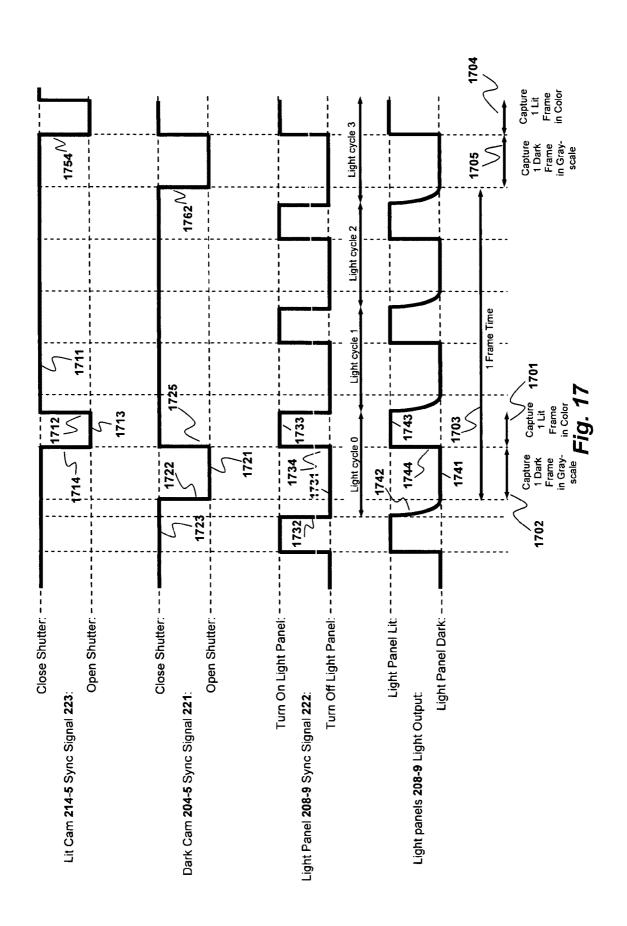
Sheet 18 of 33


Jun. 26, 2012

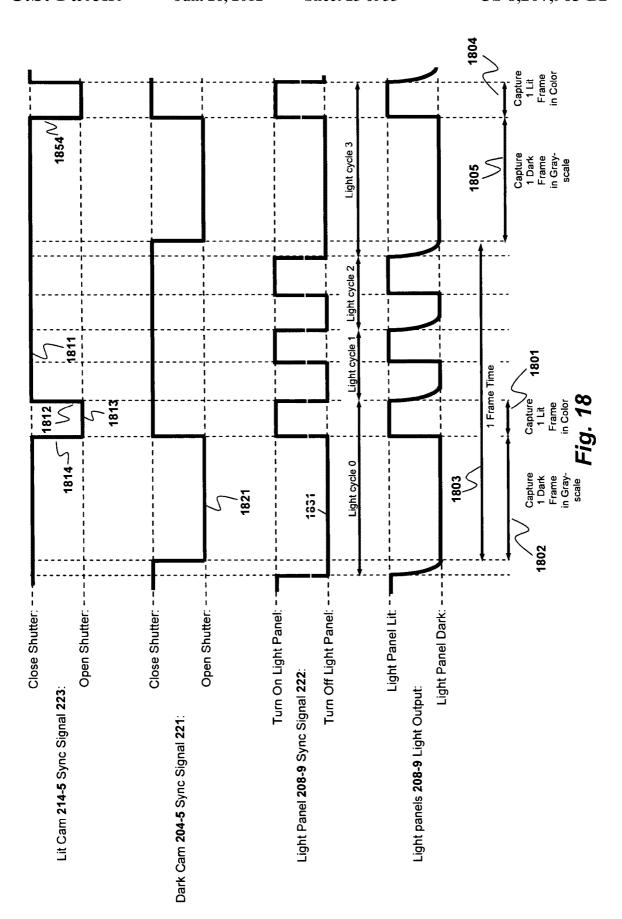
Sheet 19 of 33


Jun. 26, 2012

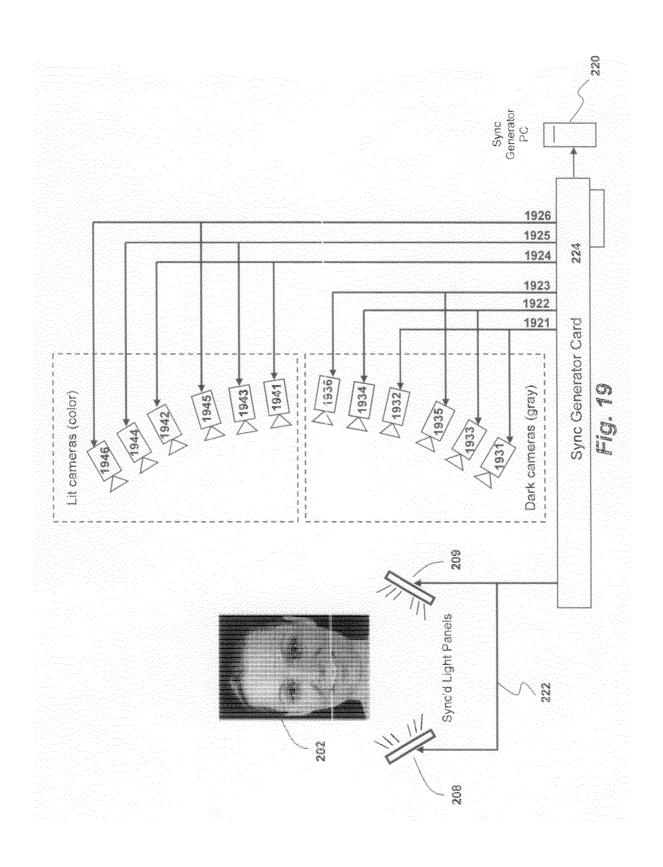
Sheet 20 of 33


Jun. 26, 2012

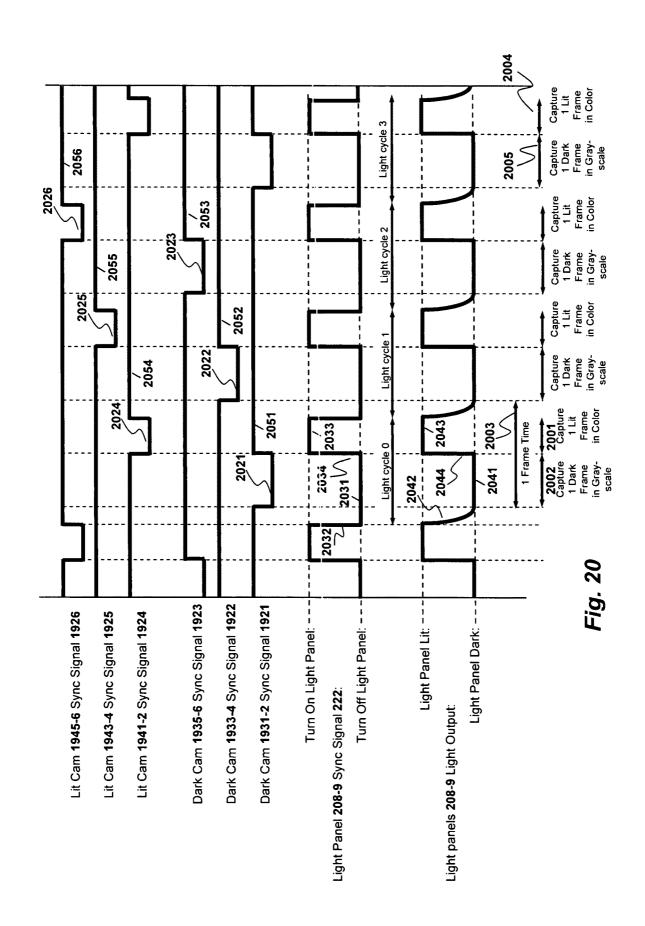
Sheet 21 of 33


Jun. 26, 2012

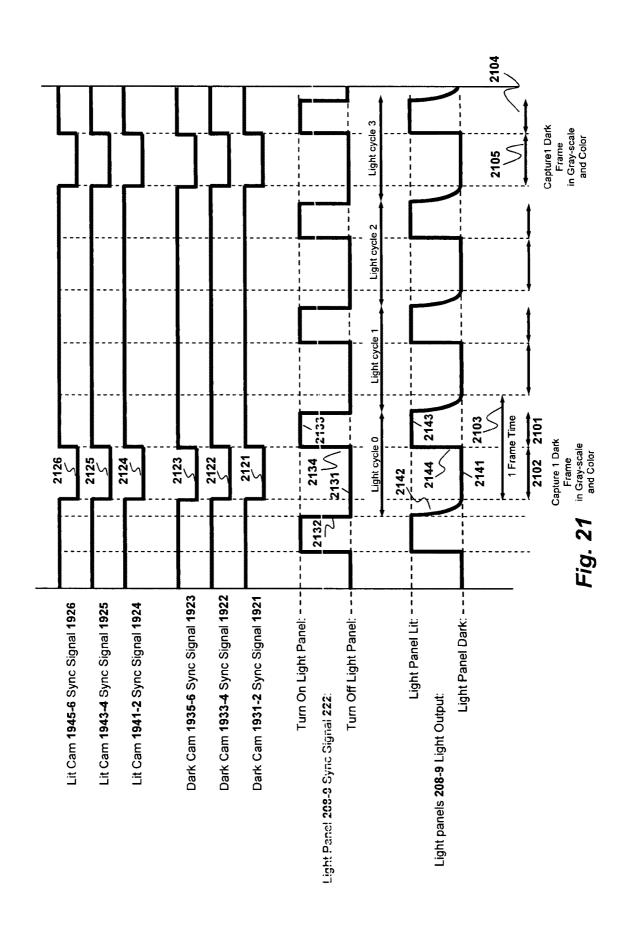
Sheet 22 of 33


Jun. 26, 2012

Sheet 23 of 33


Jun. 26, 2012

Sheet 24 of 33


Jun. 26, 2012

Sheet 25 of 33

Jun. 26, 2012

Sheet 26 of 33

Jun. 26, 2012 Sheet 27 of 33

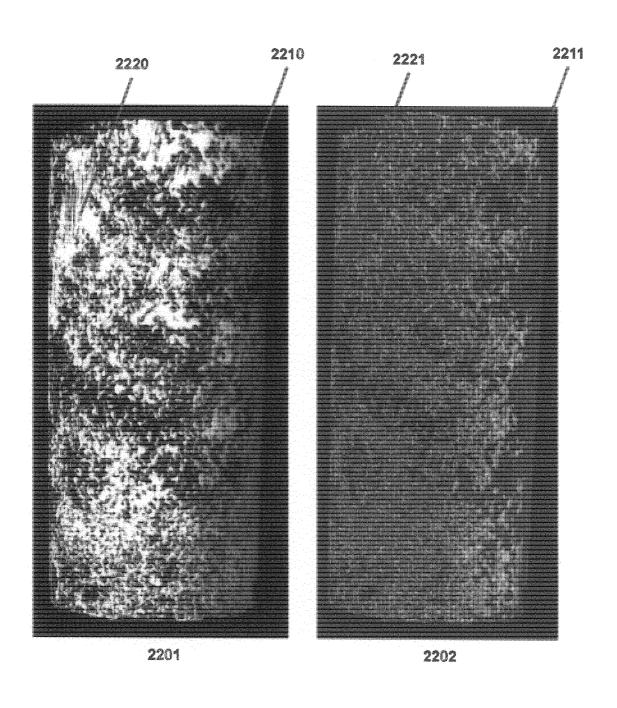
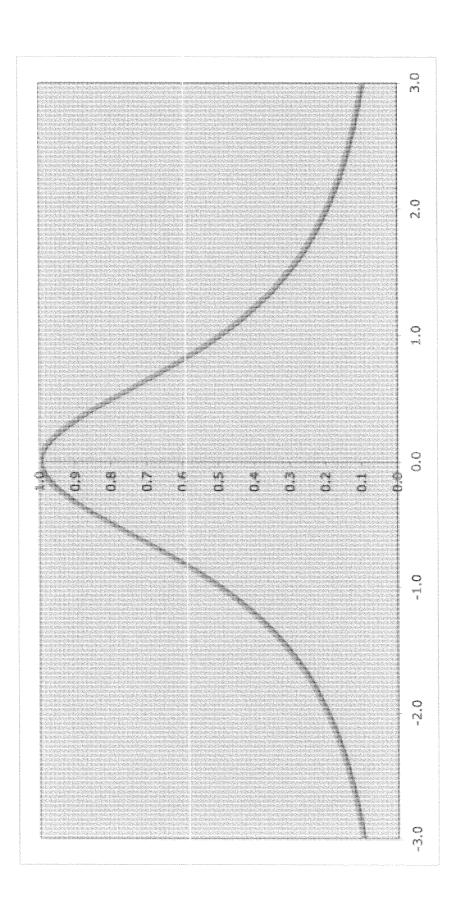
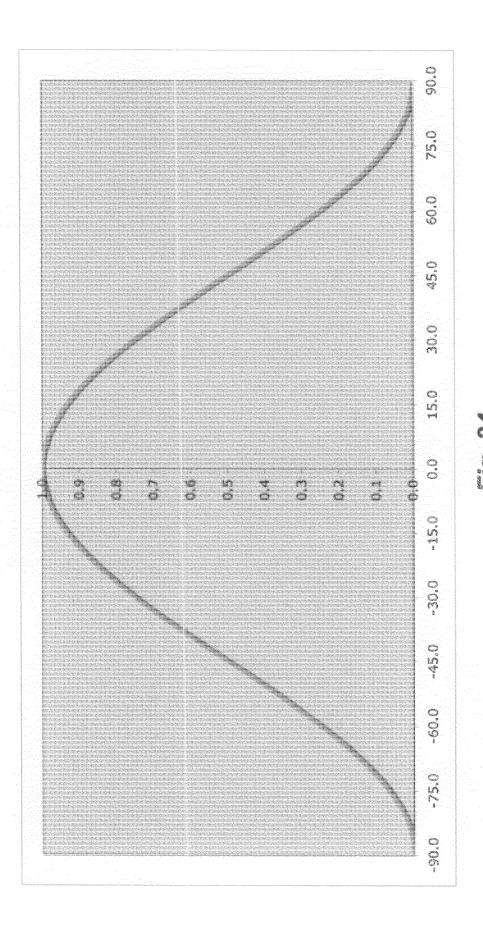



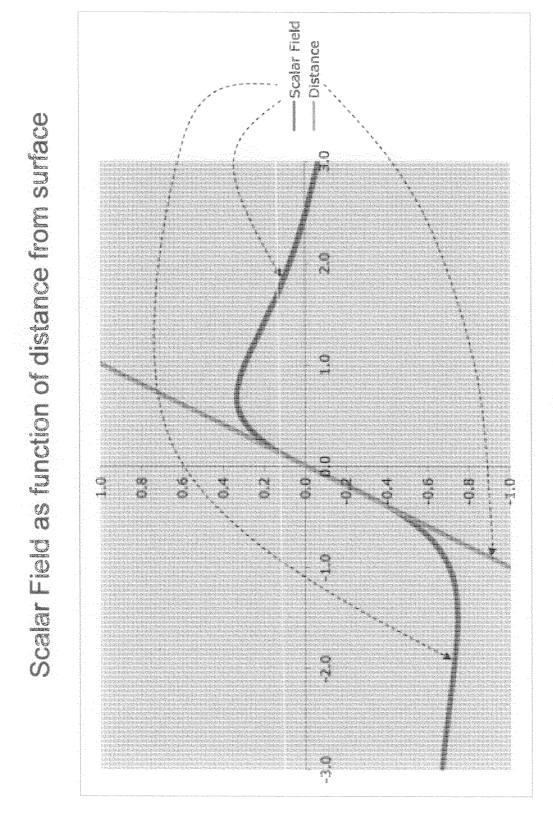
Fig. 22

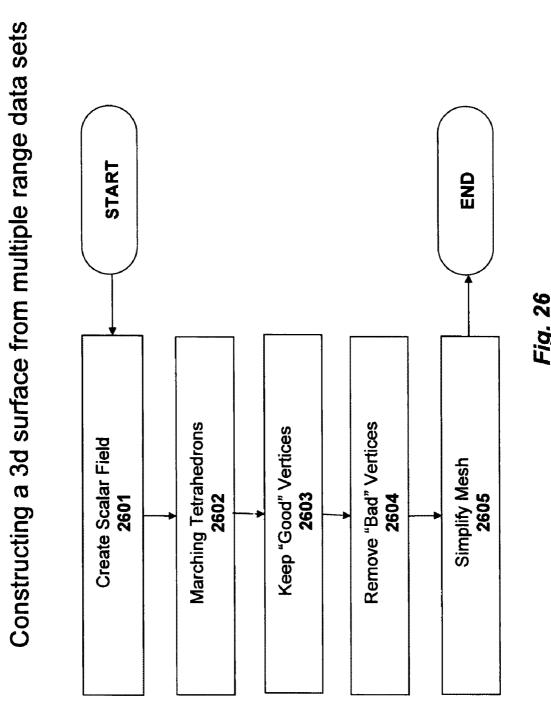
Jun. 26, 2012

Sheet 28 of 33

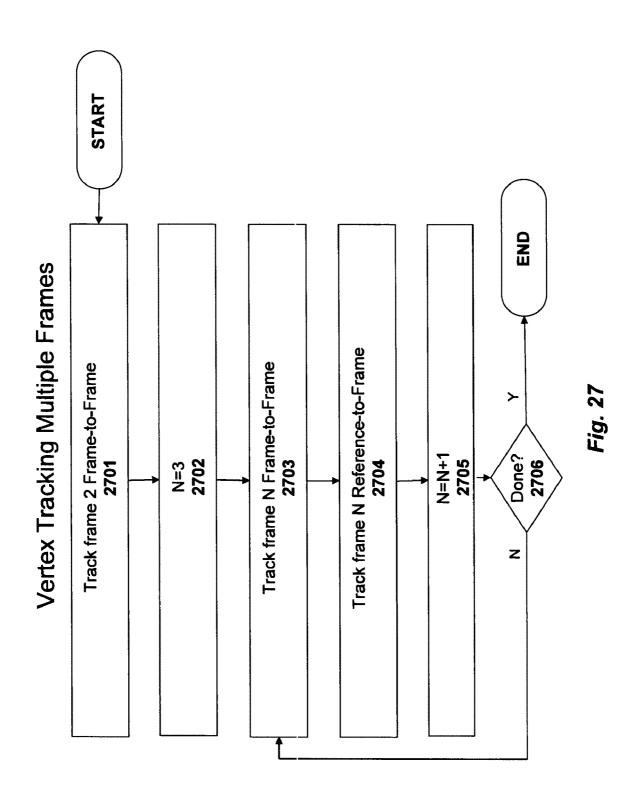

Weighting as function of distance from surface

Jun. 26, 2012

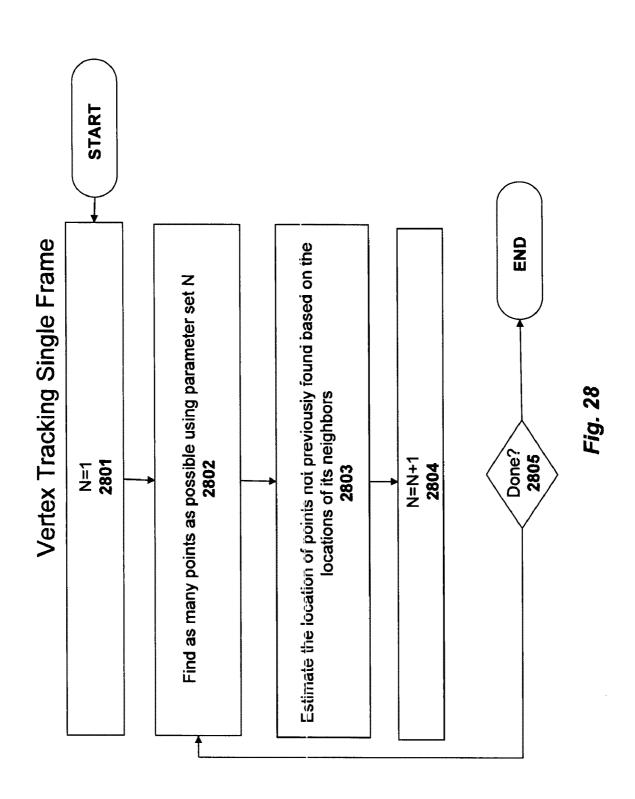

Sheet 29 of 33


Jun. 26, 2012

Sheet 30 of 33


Jun. 26, 2012

Sheet 31 of 33


Jun. 26, 2012

Sheet 32 of 33

Jun. 26, 2012

Sheet 33 of 33

US 8,207,963 B2

1

SYSTEM AND METHOD FOR PERFORMING MOTION CAPTURE AND IMAGE RECONSTRUCTION

PRIORITY CLAIM

This application claims the benefit of U.S. Provisional Application No. 60/834,771 entitled, "System and Method For Performing Motion", filed on Jul. 31, 2006.

The patent or application file contains at least one drawing 10 executed in color. Copies of this patent or patent publication with color drawing(s) will be provided by the U.S. Patent and Trademark Office upon request and payment of the necessary

BACKGROUND OF THE INVENTION

1. Field of the Invention

This invention relates generally to the field of motion capture. More particularly, the invention relates to an improved 20 apparatus and method for performing motion capture and image reconstruction.

2. Description of the Related Art

"Motion capture" refers generally to the tracking and recording of human and animal motion. Motion capture sys- 25 tems are used for a variety of applications including, for example, video games and computer-generated movies. In a typical motion capture session, the motion of a "performer" is captured and translated to a computer-generated character.

As illustrated in FIG. 1 in a motion capture system, a 30 plurality of motion tracking "markers" (e.g., markers 101, 102) are attached at various points on a performer's 100's body. The points are selected based on the known limitations of the human skeleton. Different types of motion capture markers are used for different motion capture systems. For 35 example, in a "magnetic" motion capture system, the motion markers attached to the performer are active coils which generate measurable disruptions x, y, z and yaw, pitch, roll in a magnetic field.

By contrast, in an optical motion capture system, such as 40 a time interval when the light panels are lit. that illustrated in FIG. 1, the markers 101, 102 are passive spheres comprised of retro-reflective material, i.e., a material which reflects light back in the direction from which it came, ideally over a wide range of angles of incidence. A plurality of cameras 120, 121, 122, each with a ring of LEDs 130, 131, 45 132 around its lens, are positioned to capture the LED light reflected back from the retro-reflective markers 101, 102 and other markers on the performer. Ideally, the retro-reflected LED light is much brighter than any other light source in the room. Typically, a thresholding function is applied by the 50 cameras 120, 121, 122 to reject all light below a specified level of brightness which, ideally, isolates the light reflected off of the reflective markers from any other light in the room and the cameras 120, 121, 122 only capture the light from the markers 101, 102 and other markers on the performer.

A motion tracking unit 150 coupled to the cameras is programmed with the relative position of each of the markers 101, 102 and/or the known limitations of the performer's body. Using this information and the visual data provided from the cameras 120-122, the motion tracking unit 150 60 generates artificial motion data representing the movement of the performer during the motion capture session.

A graphics processing unit 152 renders an animated representation of the performer on a computer display 160 (or similar display device) using the motion data. For example, 65 the graphics processing unit 152 may apply the captured motion of the performer to different animated characters and/

2

or to include the animated characters in different computergenerated scenes. In one implementation, the motion tracking unit 150 and the graphics processing unit 152 are programmable cards coupled to the bus of a computer (e.g., such as the PCI and AGP buses found in many personal computers). One well known company which produces motion capture systems is Motion Analysis Corporation (see, e.g., www.motionanalysis.com).

SUMMARY

A system and method are described for performing motion capture on a subject using fluorescent lamps. For example, a system according to one embodiment of the invention com-15 prises: a synchronization signal generator to generate one or more synchronization signals; one or more fluorescent lamps configured to strobe on and off responsive to a first one of the one or more synchronization signals, the fluorescent lamps charging phosphorescent makeup, paint or dye applied to a subject for a motion capture session; and a plurality of cameras having shutters strobed synchronously with the strobing of the light source to capture images of the phosphorescent paint, wherein the shutters are open when the light source is off and the shutters are closed when the light source is on.

BRIEF DESCRIPTION OF THE DRAWINGS

A better understanding of the present invention can be obtained from the following detailed description in conjunction with the drawings, in which:

The patent or application file contains at least one drawing executed in color. Copies of this patent or patent publication with color drawing(s) will be provided by the U.S. Patent and Trademark Office upon request and payment of the necessary

FIG. 1 illustrates a prior art motion tracking system for tracking the motion of a performer using retro-reflective markers and cameras.

FIG. 2a illustrates one embodiment of the invention during

FIG. 2b illustrates one embodiment of the invention during a time interval when the light panels are dark.

FIG. 3 is a timing diagram illustrating the synchronization between the light panels and the shutters according to one embodiment of the invention.

FIG. 4 is images of heavily-applied phosphorescent makeup on a model during lit and dark time intervals, as well as the resulting reconstructed 3D surface and textured 3D

FIG. 5 is images of phosphorescent makeup mixed with base makeup on a model both during lit and dark time intervals, as well as the resulting reconstructed 3D surface and textured 3D surface.

FIG. 6 is images of phosphorescent makeup applied to 55 cloth during lit and dark time intervals, as well as the resulting reconstructed 3D surface and textured 3D surface.

FIG. 7a illustrates a prior art stop-motion animation stage. FIG. 7b illustrates one embodiment of the invention where stop-motion characters and the set are captured together.

FIG. 7c illustrates one embodiment of the invention where the stop-motion set is captured separately from the characters.

FIG. 7d illustrates one embodiment of the invention where a stop-motion character is captured separately from the set and other characters.

FIG. 7e illustrates one embodiment of the invention where a stop-motion character is captured separately from the set and other characters.

US 8,207,963 B2

3

- FIG. **8** is a chart showing the excitation and emission spectra of ZnS:Cu phosphor as well as the emission spectra of certain fluorescent and LED light sources.
 - FIG. 9 is an illustration of a prior art fluorescent lamp.
- FIG. 10 is a circuit diagram of a prior art fluorescent lamp ballast as well as one embodiment of a synchronization control circuit to modify the ballast for the purposes of the present invention.
- FIG. 11 is oscilloscope traces showing the light output of a fluorescent lamp driven by a fluorescent lamp ballast modified by the synchronization control circuit of FIG. 9.
- FIG. 12 is oscilloscope traces showing the decay curve of the light output of a fluorescent lamp driven by a fluorescent lamp ballast modified by the synchronization control circuit of FIG. 9.
- FIG. 13 is a illustration of the afterglow of a fluorescent lamp filament and the use of gaffer's tape to cover the filament.
- FIG. 14 is a timing diagram illustrating the synchronization between the light panels and the shutters according to one 20 embodiment of the invention.
- FIG. 15 is a timing diagram illustrating the synchronization between the light panels and the shutters according to one embodiment of the invention.
- FIG. **16** is a timing diagram illustrating the synchronization ²⁵ between the light panels and the shutters according to one embodiment of the invention.
- FIG. 17 is a timing diagram illustrating the synchronization between the light panels and the shutters according to one embodiment of the invention.
- FIG. 18 is a timing diagram illustrating the synchronization between the light panels and the shutters according to one embodiment of the invention.
- FIG. **19** illustrates one embodiment: of the camera, light panel, and synchronization subsystems of the invention during a time interval when the light panels are lit.
- FIG. 20 is a timing diagram illustrating the synchronization between the light panels and the shutters according to one embodiment of the invention.
- FIG. **21** is a timing diagram illustrating the synchronization ⁴⁰ between the light panels and the shutters according to one embodiment of the invention.
- FIG. 22 illustrates one embodiment of the invention where color is used to indicate phosphor brightness.
- FIG. 23 illustrates weighting as a function of distance from 45 surface.
- FIG. 24 illustrates weighting as a function of surface normal.
- FIG. 25 illustrates scalar field as a function of distance from gurfoco
- FIG. **26** illustrates one embodiment of a process for constructing a 3-D surface from multiple range data sets.
- FIG. 27 illustrates one embodiment of a method for vertex tracking for multiple frames.
- FIG. **28** illustrates one embodiment of a method for vertex 55 tracking of a single frame.

DETAILED DESCRIPTION OF PREFERRED EMBODIMENTS

Described below is an improved apparatus and method for performing motion capture using shutter synchronization and/or phosphorescent makeup, paint or dye. In the following description, for the purposes of explanation, numerous specific details are set forth in order to provide a thorough understanding of the present invention. It will be apparent, however, to one skilled in the art that the present invention may be

4

practiced without some of these specific details. In other instances, well-known structures and devices are shown in block diagram form to avoid obscuring the underlying principles of the invention.

The assignee of the present application previously developed a system for performing color-coded motion capture and a system for performing motion capture using a series of reflective curves painted on a performer's face. These systems are described in the co-pending applications entitled "Apparatus and Method for Capturing the Motion and/or Expression of a Performer," Ser. Nos. 10/942,609, and 10/942, 413, filed Sep. 15, 2004. These applications are assigned to the assignee of the present application and are incorporated herein by reference.

The assignee of the present application also previously developed a system for performing motion capture of random patterns applied to surfaces. This system is described in the co-pending applications entitled "APPARATUS AND METHOD FOR PERFORMING MOTION CAPTURE USING A RANDOM PATTERN ON CAPTURE SURFACES," Ser. No. 11/255,854, Filed Oct. 20, 2005. This application is assigned to the assignee of the present application and is incorporated herein by reference.

The assignee of the present application also previously developed a system for performing motion capture using shutter synchronization and phosphorescent paint. This system is described in the co-pending application entitled "APPARATUS AND METHOD FOR PERFORMING MOTION CAPTURE USING SHUTTER SYNCHRONIZATION," Ser. No. 11/077,628, Filed Mar. 10, 2005 (hereinafter "Shutter Synchronization" application). Briefly, in the Shutter Synchronization application, the efficiency of the motion capture system is improved by using phosphorescent paint or makeup and by precisely controlling synchronization between the motion capture cameras' shutters and the illumination of the painted curves. This application is assigned to the assignee of the present application and is incorporated herein by reference.

System Overview

As described in these co-pending applications, by analyzing curves or random patterns applied as makeup on a performer's face rather than discrete marked points or markers on a performer's face, the motion capture system is able to generate significantly more surface data than traditional marked point or marker-based tracking systems. The random patterns or curves are painted on the face of the performer using retro-reflective, non-toxic paint or theatrical makeup. In one embodiment of the invention, non-toxic phosphorescent makeup is used to create the random patterns or curves. By utilizing phosphorescent paint or makeup combined with synchronized lights and camera shutters, the motion capture system is able to better separate the patterns applied to the performer's face from the normally-illuminated image of the face or other artifacts of normal illumination such as highlights and shadows.

FIGS. 2a and 2b illustrate an exemplary motion capture system described in the co-pending applications in which a random pattern of phosphorescent makeup is applied to a performer's face and motion capture is system is operated in a light-sealed space. When the synchronized light panels 208-209 are on as illustrated FIG. 2a, the performers' face looks as it does in image 202 (i.e. the phosphorescent makeup is only slightly visible). When the synchronized light panels 208-209 (e.g. LED arrays) are off as illustrated in FIG. 2b, the performers' face looks as it does in image 203 (i.e. only the glow of the phosphorescent makeup is visible).

US 8,207,963 B2

5

Grayscale dark cameras 204-205 are synchronized to the light panels 208-209 using the synchronization signal generator PCI Card 224 (an exemplary PCI card is a PCI-6601 manufactured by National Instruments of Austin, Tex.) coupled to the PCI bus of synchronization signal generator 5 PC 220 that is coupled to the data processing system 210 and so that all of the systems are synchronized together. Light Panel Sync signal 222 provides a TTL-level signal to the light panels 208-209 such that when the signal 222 is high (i.e. ≥2.0V), the light panels 208-209 turn on, and when the signal 10 222 is low (i.e. ≤ 0.8 V), the light panels turn off. Dark Cam Sync signal 221 provides a TTL-level signal to the grayscale dark cameras 204-205 such that when signal 221 is low the camera 204-205 shutters open and each camera 204-205 captures an image, and when signal 221 is high the shutters close 15 and the cameras transfer the captured images to camera controller PCs 205. The synchronization timing (explained in detail below) is such that the (camera 204-205 shutters open to capture a frame when the light panels 208-209 are off (the "dark" interval). As a result, grayscale dark cameras 204-205 20 capture images of only the output of the phosphorescent makeup. Similarly, Lit Cam Sync 223 provides TTL-level signal to color lit cameras 214-215 such that when signal 221 is low the camera 204-205 shutters open and each camera 204-205 captures an image, and when signal 221 is high the 25 shutters close and the cameras transfer the captured images to camera controller computers 225. Color lit cameras 214-215 are synchronized (as explained in detail below) such that their shutters open to capture a frame when the light panels 208-209 are on (the "lit" interval). As a result, color lit cameras 30 214-215 capture images of the performers' face illuminated by the light panels.

As used herein, grayscale cameras 204-205 may be referenced as "dark cameras" or "dark cams" because their shutters normally only when the light panels 208-209 are dark. 35 Similarly, color cameras 214-215 may be referenced as "lit cameras" or "lit cams" because normally their shutters are only open when the light panels 208-209 are lit. While grayscale and color cameras are used specifically for each lighting phase in one embodiment, either grayscale or color cameras 40 can be used for either light phase in other embodiments.

In one embodiment, light panels 208-209 are flashed rapidly at 90 flashes per second (as driven by a 90 Hz square wave from Light Panel Sync signal 222), with the cameras 204-205 and 214-205 synchronized to them as previously described. 45 At 90 flashes per second, the light panels 208-209 are flashing at a rate faster than can be perceived by the vast majority of humans, and as a result, the performer (as well as any observers of the motion capture session) perceive the room as being steadily illuminated and are unaware of the flashing, and the 50 performer is able to proceed with the performance without distraction from the flashing light panels 208-209.

As described in detail in the co-pending applications, the images captured by cameras 204-205 and 214-215 are tralized motion capture controller 206) and the images and images sequences so recorded are processed by data processing system 210. The images from the various grayscale dark cameras are processed so as to determine the geometry of the 3D surface of the face 207. Further processing by data pro- 60 cessing system 210 can be used to map the color lit images captured onto the geometry of the surface of the face 207. Yet further processing by the data processing system 210 can be used to track surface points on the face from frame-to-frame.

In one embodiment, each of the camera controllers 225 and 65 central motion capture controller 206 is implemented using a separate computer system. Alternatively, the camera control6

lers and motion capture controller may be implemented as software executed on a single computer system or as any combination of hardware and software. In one embodiment, the camera controller computers 225 are rack-mounted computers, each using a 945GT Speedster-A4R motherboard from MSI Computer Japan Co., Ltd. (C&K Bldg. 6F 1-17-6, Higashikanda, Chiyoda-ku, Tokyo 101-0031 Japan) with 2 Gbytes of random access memory (RAM) and a 2.16 GHz Intel Core Duo central processing unit from Intel Corporation, and a 300 GByte SATA hard disk from Western Digital, Lake Forest Calif. The cameras 204-205 and 214-215 interface to the camera controller computers 225 via IEEE 1394

In another embodiment the central motion capture controller 206 also serves as the synchronization signal generator PC 220. In yet another embodiment the synchronization signal generator PCI card 224 is replaced by using the parallel port output of the synchronization signal generator PC 220. In such an embodiment, each of the TTL-level outputs of the parallel port are controlled by an application running on synchronization signal generator PC 220, switching each TTLlevel output to a high state or a low state in accordance with the desired signal timing. For example, bit 0 of the PC 220 parallel port is used to drive synchronization signal 221, bit 1 is used to drive signal 222, and bit 2 is used to drive signal 224. However, the underlying principles of the invention are not limited to any particular mechanism for generating the synchronization signals.

The synchronization between the light sources and the cameras employed in one embodiment of the invention is illustrated in FIG. 3. In this embodiment, the Light Panel and Dark Cam Sync signals 221 and 222 are in phase with each other, while the Lit Cam Sync Signal 223 is the inverse of signals 221/222. In one embodiment, the synchronization signals cycle between 0 to 5 Volts. In response to the synchronization signal 221 and 223, the shutters of the cameras 204-205 and 214-215, respectively, are periodically opened and closed as shown in FIG. 3. In response to sync signal 222, the light panels are periodically turned off and on, respectively as shown in FIG. 3. For example, on the falling edge 314 of sync signal 223 and on the rising edges 324 and 334 of sync signals 221 and 222, respectively, the lit camera 214-215 shutters are opened and the dark camera 204-215 shutters are closed and the light panels are illuminated as shown by rising edge 344. The shutters remain in their respective states and the light panels remain illuminated for time interval 301. Then, on the rising edge 312 of sync signal 223 and falling edges 322 and 332 of the sync signals 221 and 222, respectively, the lit camera 214-215 shutters are closed, the dark camera 204-215 shutters are opened and the light panels are turned off as shown by falling edge 342. The shutters and light panels are left in this state for time interval 302. The process then repeats for each successive frame time interval 303.

As a result, during the first time interval 301, a normally-lit recorded by camera controllers 225 (coordinated by a cen- 55 image is captured by the color lit cameras 214-215, and the phosphorescent makeup is illuminated (and charged) with light from the light panels 208-209. During the second time interval 302, the light is turned off and the grayscale dark cameras 204-205 capture an image of the glowing phosphorescent makeup on the performer. Because the light panels are off during the second time interval 302, the contrast between the phosphorescent makeup and any surfaces in the room without phosphorescent makeup is extremely high (i.e., the rest of the room is pitch black or at least quite dark, and as a result there is no significant light reflecting off of surfaces in the room, other than reflected light from the phosphorescent emissions), thereby improving the ability of the system to

7

differentiate the various patterns applied to the performer's face. In addition, because the light panels are on half of the time, the performer will be able to see around the room during the performance, and also the phosphorescent makeup is constantly recharged. The frequency of the synchronization signals is 1/(time interval 303) and may be set at such a high rate that the performer will not even notice that the light panels are being turned on and off. For example, at a flashing rate of 90 Hz or above, virtually all humans are unable to perceive that a light is flashing and the light appears to be continuously illuminated. In psychophysical parlance, when a high frequency flashing light is perceived by humans to be continuously illuminated, it is said that "fusion" has been achieved. In one embodiment, the light panels are cycled at 120 Hz; in another embodiment, the light panels are cycled at 140 Hz, 15 both frequencies far above the fusion threshold of any human. However, the underlying principles of the invention are not limited to any particular frequency.

Surface Capture of Skin Using Phosphorescent Random Patterns

FIG. 4 shows images captured using the methods described above and the 3D surface and textured 3D surface reconstructed from them. Prior to capturing the images, a phospho- 25 rescent makeup was applied to a Caucasian model's face with an exfoliating sponge. Luminescent zinc sulfide with a copper activator (ZnS:Cu) is the phosphor responsible for the makeup's phosphorescent properties. This particular formulation of luminescent Zinc Sulfide is approved by the FDA color 30 additives regulation 21 CFR Part 73 for makeup preparations. The particular brand is Fantasy F/XT Tube Makeup; Product #: FFX; Color Designation: GL; manufactured by Mehron Inc. of 100 Red Schoolhouse Rd. Chestnut Ridge, N.Y. 10977. The motion capture session that produced these 35 images utilized 8 grayscale dark cameras (such as cameras 204-205) surrounding the model's face from a plurality, of angles and 1 color lit camera (such as cameras 214-215) pointed at the model's face from an angle to provide the view seen in Lit Image 401. The grayscale cameras were model 40 A311 f from Basler A G, An der Strusbek 60-62, 22926 Ahrensburg, Germany, and the color camera was a Basler model A311fc. The light panels 208-209 were flashed at a rate of 72 flashes per second.

Lit Image 401 shows an image of the performer captured 45 by one of the color lit cameras 214-215 during lit interval 301, when the light panels 208-209 are on and the color lit camera 214-215 shutters are open. Note that the phosphorescent makeup is quite visible on the performer's face, particularly the lips.

Dark Image 402 shows an image of the performer captured by one of the grayscale dark cameras 204-205 during dark interval 302, when the light panels 208-209 are off and the grayscale dark camera 204-205 shutters are open. Note that only random pattern of phosphorescent makeup is visible on 55 the surfaces where it is applied. All other surfaces in the image, including the hair, eyes, teeth, ears and neck of the performer are completely black.

3D Surface 403 shows a rendered image of the surface reconstructed from the Dark Images 402 from grayscale dark 60 cameras 204-205 (in this example, 8 grayscale dark cameras were used, each producing a single Dark Image 402 from a different angle) pointed at the model's face from a plurality of angles. One reconstruction process which may be used to create this image is detailed in co-pending application Apparatus and Method for Performing Motion Capture Using A Random Pattern On Capture Surfaces, Ser. No. 11/255,854,

8

Filed Oct. 20, 2005. Note that 3D Surface 403 was only reconstructed from surfaces where there was phosphorescent makeup applied. Also, the particular embodiment of the technique that was used to produce the 3D Surface 403 fills in cavities in the 3D surface (e.g., the eyes and the mouth in this example) with a flat surface.

Textured 3D Surface 404 shows the Lit Image 401 used as a texture map and mapped onto 3D Surface 403 and rendered at an angle. Although Textured 3D Surface 404 is a computergenerated 3D image of the model's face, to the human eye it appears real enough that when it is rendered at an angle, such as it is in image 404, it creates the illusion that the model is turning her head and actually looking at an angle. Note that no phosphorescent makeup was applied to the model's eyes and teeth, and the image of the eyes and teeth are mapped onto flat surfaces that fill those cavities in the 3D surface. Nonetheless, the rest of the 3D surface is reconstructed so accurately, the resulting Textured 3D Surface 404 approaches photorealism. When this process is applied to create successive frames of 20 Textured 3D Surfaces 404, when the frames are played back in real-time, the level of realism is such that, to the untrained eye, the successive frames look like actual video of the model, even though it is a computer-generated 3D image of the model viewed from side angle.

Since the Textured 3D Surfaces 404 produces computergenerated 3D images, such computer-generated images can manipulated with far more flexibility than actual video captured of the model. With actual video it is often impractical (or impossible) to show the objects in the video from any camera angles other than the angle from which the video was shot. With computer-generated 3D, the image can be rendered as if it is viewed from any camera angle. With actual video it is generally necessary to use a green screen or blue screen to separate an object from its background (e.g. so that a TV meteorologist can be composited in front of a weather map), and then that green- or blue-screened object can only be presented from the point of view of the camera shooting the object. With the technique just described, no green/blue screen is necessary. Phosphorescent makeup, paint, or dye is applied to the areas desired to be captured (e.g. the face, body and clothes of the meteorologist) and then the entire background will be separated from the object. Further, the object can be presented from any camera angle. For example, the meteorologist can be shown from a straight-on shot, or from an side angle shot, but still composited in front of the weather

Further, a 3D generated image can be manipulated in 3D. For example, using standard 3D mesh manipulation tools (such as those in Maya, sold by Autodesk, Inc.) the nose can be shortened or lengthened, either for cosmetic reasons if the performer feels her nose would look better in a different size, or as a creature effect, to make the performer look like a fantasy character like Gollum of "Lord of the Rings." More extensive 3D manipulations could add wrinkles to the performers face to make her appear to be older, or smooth out wrinkles to make her look younger. The face could also be manipulated to change the performer's expression, for Example, from a smile to a frown. Although some 2D manipulations are possible with conventional 2D video capture, they are generally limited to manipulations from the point of view of the camera. If the model turns her head during the video sequence, the 2D manipulations applied when the head is facing the camera would have to be changed when the head is turned. 3D manipulations do not need to be changed, regardless of which way the head is turned. As a result, the techniques described above for creating successive frames of Textured 3D Surface 404 in a video sequence make it possible

9

to capture objects that appear to look like actual video, but nonetheless have the flexibility of manipulation as computer-generated 3D objects, offering enormous advantages in production of video, motion pictures, and also video games (where characters may be manipulated by the player in 3D).

Note that in FIG. 4 the phosphorescent makeup is visible on the model's face in Lit Image 401 and appears like a yellow powder has been spread on her face. It is particularly prominent on her lower lip, where the lip color is almost entirely changed from red to yellow. These discolorations appear in Textured 3D Surface 404, and they would be even more prominent on a dark-skinned model who is, for example, African in race. Many applications (e.g. creating a fantasy 3D character like Gollum) only require 3D Surface 403, and Textured 3D Surface 404 would only serve as a reference to 3D animators manipulating the 3D Surface 403. But in some applications, maintaining the actual skin color of the model's skin is important and the discolorations from the phosphorescent makeup are not desirable.

Surface Capture Using Phosphorescent Makeup Mixed with Base

FIG. 5 shows a similar set of images as FIG. 4, captured and created under the same conditions: with 8 grayscale dark cameras (such as 204-205), 1 color camera (such as 214-215), with the Lit Image 501 captured by the color lit camera during the time interval when the Light Array 208-9 is on, and the Dark Image 502 captured by one of the 8 grayscale dark cameras when the Light Array 208-9. 3D Surface 503 is reconstructed from the 8 Dark Images 502 from the 8 grayscale dark cameras, and Textured 3D Surface 504 is a rendering of the Lit Image 501 texture-mapped onto 3D Surface 503 (and unlike image 404, image 504 is rendered from a camera angle similar to the camera angle of the color lit camera that captured Lit Image 501).

However, there is a notable differences between the images of FIG. 5 and FIG. 4: The phosphorescent makeup that is noticeably visible in Lit Image 401 and Textured 3D Surface 40404 is almost invisible in Lit Image 501 and Textured 3D Surface 504. The reason for this is that, rather than applying the phosphorescent makeup to the model in its pure form, as was done in the motion capture session of FIG. 4, in the embodiment illustrated in FIG. 5 the phosphorescent makeup was mixed with makeup base and was then applied to the model. The makeup base used was "Clean Makeup" in "Buff Beige" color manufactured by Cover Girl, and it was mixed with the same phosphorescent makeup used in the FIG. 4 shoot in a proportion of 80% phosphorescent makeup and 50 20% base makeup.

Note that mixing the phosphorescent makeup with makeup base does reduce the brightness of the phosphorescence during the Dark interval 302. Despite this, the phosphorescent brightness is still sufficient to produce Dark Image 502, and 55 there is enough dynamic range in the dark images from the 8 grayscale dark cameras to reconstruct 3D Surface 503. As previously noted, some applications do not require an accurate capture of the skin color of the model, and in that case it is advantageous to not mix the phosphorescent makeup with 60 base, and then get the benefit of higher phosphorescent brightness during the Dark interval 302 (e.g. higher brightness allows for a smaller aperture setting on the camera lens, which allows for larger depth of field). But some applications do require an accurate capture of the skin color of the model. 65 For such applications, it is advantageous to mix the phosphorescent makeup with base (in a color suited for the model's

10

skin tone) makeup, and work within the constraints of lower phosphorescent brightness. Also, there are applications where some phosphor visibility is acceptable, but not the level of visibility seen in Lit Image 401. For such applications, a middle ground can be found in terms of skin color accuracy and phosphorescent brightness by mixing a higher percentage of phosphorescent makeup relative to the base.

In another embodiment, luminescent zinc sulfide (ZnS:Cu) in its raw form is mixed with base makeup and applied to the 10 model's face.

Surface Capture of Fabric with Phosphorescent Random Patterns

In another embodiment, the techniques described above are used to capture cloth. FIG. 6 shows a capture of a piece of cloth (part of a silk pajama top) with the same phosphorescent makeup used in FIG. 4 sponged onto it. The capture was done under the exact same conditions with 8 grayscale dark cameras (such as 204-205) and 1 color lit camera (such as 214-215). The phosphorescent makeup can be seen slightly discoloring the surface of Lit Frame 601, during lit interval 301, but it can be seen phosphorescing brightly in Dark Frame 602, during dark interval 302. From the 8 cameras of Dark Frame 602, 3D Surface 603 is reconstructed using the same techniques used for reconstructing the 3D Surfaces 403 and 503. And, then Lit Image 601 is texture-mapped onto 3D Surface 603 to produce Textured 3D Surface 604.

FIG. 6 shows a single frame of captured cloth, one of hundreds of frames that were captured in a capture session while the cloth was moved, folded and unfolded. And in each frame, each area of the surface of the cloth was captured accurately, so long as at least 2 of the 8 grayscale cameras had a view of the area that was not overly oblique (e.g. the camera optical axis was within 30 degrees of the area's surface normal). In some frames, the cloth was contorted such that there were areas within deep folds in the cloth (obstructing the light from the light panels 208-209), and in some frames the cloth was curved such that there were areas that reflected back the light from the light panels 208-209 so as to create a highlight (i.e. the silk fabric was shiny). Such lighting conditions would make it difficult, if not impossible, to accurately capture the surface of the cloth using reflected light during lit interval 301 because shadow areas might be too dark for an accurate capture (e.g. below the noise floor of the camera sensor) and some highlights might be too bright for an accurate capture (e.g. oversaturating the sensor so that it reads the entire area as solid white). But, during the dark interval 302, such areas are readily captured accurately because the phosphorescent makeup emits light quite uniformly, whether deep in a fold or on an external curve of the cloth.

Because the phosphor charges from any light incident upon it, including diffused or reflected light that is not directly from the light panels 208-209, even phosphor within folds gets charged (unless the folds are so tightly sealed no light can get into them, but in such cases it is unlikely that the cameras can see into the folds anyway). This illustrates a significant advantage of utilizing phosphorescent makeup (or paint or dye) for creating patterns on (or infused within) surfaces to be captured: the phosphor is emissive and is not subject to highlights and shadows, producing a highly uniform brightness level for the patterns seen by the grayscale dark cameras 204-205, that neither has areas too dark nor areas too bright.

Another advantage of dyeing or painting a surface with phosphorescent dye or paint, respectively, rather than applying phosphorescent makeup to the surface is that with dye or paint the phosphorescent pattern on the surface can be made

permanent throughout a motion capture session. Makeup, by its nature, is designed to be removable, and a performer will normally remove phosphorescent makeup at the end of a day's motion capture shoot, and if not, almost certainly before going to bed. Frequently, motion capture sessions 5 extend across several days, and as a result, normally a fresh application of phosphorescent makeup is applied to the performer each day prior to the motion capture shoot. Typically, each fresh application of phosphorescent makeup will result in a different random pattern. One of the techniques disclosed 10 in co-pending applications is the tracking of vertices ("vertex tracking") of the captured surfaces. Vertex tracking is accomplished by correlating random patterns from one captured frame to the next. In this way, a point on the captured surface can be followed from frame-to-frame. And, so long as the 15 random patterns on the surface stay the same, a point on a captured surface even can be tracked from shot-to-shot. In the case of random patterns made using phosphorescent makeup, it is typically practical to leave the makeup largely undisturbed (although it is possible for some areas to get smudged, 20 the bulk of the makeup usually stays unchanged until removed) during one day's-worth of motion capture shooting, but as previously mentioned it normally is removed at the end of the day. So, it is typically impractical to maintain the same phosphorescent random pattern (and with that, vertex 25 tracking based on tracking a particular random pattern) from day-to-day. But when it comes to non-skin objects like fabric, phosphorescent dye or paint can be used to create a random pattern. Because dye and paint are essentially permanent, random patterns will not get smudged during the motion 30 capture session, and the same random patterns will be unchanged from day-to-day. This allows vertex tracking of dyed or painted objects with random patterns to track the same random pattern through the duration of a multi-day motion capture session (or in fact, across multiple motion 35 capture sessions spread over long gaps in time if desired).

11

Skin is also subject to shadows and highlights when viewed with reflected light. There are many concave areas (e.g., eye sockets) that often are shadowed. Also, skin may be shiny and cause highlights, and even if the skin is covered with makeup to reduce its shininess, performers may sweat during a physical performance, resulting in shininess from sweaty skin. Phosphorescent makeup emits uniformly both from shiny and matte skin areas, and both from convex areas of the body (e.g. the nose bridge) and concavities (e.g. eye sockets). Sweat has little impact on the emission brightness of phosphorescent makeup. Phosphorescent makeup also charges while folded up in areas of the body that fold up (e.g. eyelids) and when it unfolds (e.g. when the performer blinks) the phosphorescent pattern emits light uniformly.

Returning back to FIG. 6, note that the phosphorescent makeup can be seen on the surface of the cloth in Lit Frame 601 and in Textured 3D Surface 604. Also, while this is not apparent in the images, although it may be when the cloth is in motion, the phosphorescent makeup has a small impact on 55 the pliability of the silk fabric. In another embodiment, instead of using phosphorescent makeup (which of course is formulated for skin application) phosphorescent dye is used to create phosphorescent patterns on cloth. Phosphorescent dyes are available from a number of manufacturers. For 60 example, it is common to find t-shirts at novelty shops that have glow-in-the-dark patterns printed onto them with phosphorescent dyes. The dyes can also can be formulated manually by mixing phosphorescent powder (e.g. ZnS:Cu) with off-the-shelf clothing dyes, appropriate for the given type of 65 fabric. For example, Dharma Trading Company with a store at 1604 Fourth Street, San Rafael, Calif. stocks a large num**12**

ber of dyes, each dye designed for certain fabrics types (e.g. Dharma Fiber Reactive Procion Dye is for all natural fibers, Sennelier Tinfix Design—French Silk Dye is for silk and wool), as well as the base chemicals to formulate such dyes. When phosphorescent powder is used as the pigment in such formulations, then a dye appropriate for a given fabric type is produced and the fabric can be dyed with phosphorescent pattern while minimizing the impact on the fabric's pliability.

Surface Capture of Stop-Motion Animation Characters with Phosphorescent Random Patterns

In another embodiment, phosphor is embedded in silicone or a moldable material such as modeling clay in characters, props and background sets used for stop-motion animation. Stop-motion animation is a technique used in animated motion pictures and in motion picture special effects. An exemplary prior art stop-motion animation stage is illustrated in FIG. 7a. Recent stop-motion animations are feature films Wallace & Gromit in The Curse of the Were-Rabbit (Academy Award-winning best animated feature film released in 2005) (hereafter referenced as WG) and Corpse Bride (Academy Award-nominated best animated feature film released in 2005) (hereafter referred to as CB). Various techniques are used in stop-motion animation. In WG the characters 702-703 are typically made of modeling clay, often wrapped around a metal armature to give the character structural stability. In CB the characters 702-703 are created from puppets with mechanical armatures which are then covered with molded silicone (e.g. for a face), or some other material (e.g. for clothing). The characters 702-703 in both films are placed in complex sets 701 (e.g. city streets, natural settings, or in buildings), the sets are lit with lights such as 708-709, a camera such as 705 is placed in position, and then one frame is shot by the camera 705 (in modern stop-motion animation, typically, a digital camera). Then the various characters (e.g. the man with a leash 702 and the dog 703) that are in motion in the scene are moved very slightly. In the case of WB, often the movement is achieved by deforming the clay (and potentially the armature underneath it) or by changing a detailed part of a character 702-703 (e.g. for each frame swapping in a different mouth shape on a character 702-703 as it speaks). In the case of CB, often motion is achieved by adjusting the character puppet 702-703 armature (e.g. a screwdriver inserted in a character puppet's 702-703 ear might turn a screw that actuates the armature causing the character's 702-703 mouth to open). Also, if the camera 705 is moving in the scene, then the camera 705 is placed on a mechanism that allows it to be moved, and it is moved slightly each frame time. After all the characters 702-703 and the camera 705 in a scene have been moved, another frame is captured by the camera 705. This painstaking process continues frame-byframe until the shot is completed.

There are many difficulties with the stop-motion animation process that both limit the expressive freedom of the animators, limit the degree of realism in motion, and add to the time and cost of production. One of these difficulties is animating many complex characters 702-703 within a complex set 701 on a stop-motion animation stage such as that shown in FIG. 7a. The animators often need to physically climb into the sets, taking meticulous care not to bump anything inadvertently, and then make adjustments to character 702-703 expressions, often with sub-millimeter precision. When characters 702-703 are very close to each other, it gets even more difficult. Also, sometimes characters 702-703 need to be placed in a pose where a character 702-703 can easily fall over (e.g. a character 702-703 is doing a hand stand or a character 702-

13
ases the character 702-703 requires

703 is flying). In these cases the character 702-703 requires some support structure that may be seen by the camera 705, and if so, needs to be erased from the shot in post-production.

In one embodiment illustrated by the stop-motion animation stage in FIG. 7b, phosphorescent phosphor (e.g. zinc 5 sulfide) in powder form can be mixed (e.g. kneaded) into modeling clay resulting in the clay surface phosphorescing in darkness with a random pattern. Zinc sulfide powder also can be mixed into liquid silicone before the silicone is poured into a mold, and then when the silicone dries and solidifies, it has 10 zinc sulfide distributed throughout. In another embodiment, zinc sulfide powder can be spread onto the inner surface of a mold and then liquid silicone can be poured into the mold to solidify (with the zinc sulfide embedded on the surface). In yet another embodiment, zinc sulfide is mixed in with paint 15 that is applied to the surface of either modeling clay or silicone. In yet another embodiment, zinc sulfide is dyed into fabric worn by characters 702-703 or mixed into paint applied to props or sets 701. In all of these embodiments the resulting effect is that the surfaces of the characters 702-703, props and 20 sets 701 in the scene phosphoresce in darkness with random surface patterns.

At low concentrations of zinc sulfide in the various embodiments described above, the zinc sulfide is not significantly visible under the desired scene illumination when light 25 panels 208-208 are on. The exact percentage of zinc sulfide depends on the particular material it is mixed with or applied to, the color of the material, and the lighting circumstances of the character 702-703, prop or set 701. But, experimentally, the zinc sulfide concentration can be continually reduced 30 until it is no longer visually noticeable in lighting situations where the character 702-703, prop or set 701 is to be used. This may result in a very low concentration of zinc sulfide and very low phosphorescent emission. Although this normally would be a significant concern with live action frame capture 35 of dim phosphorescent patterns, with stop-motion animation, the dark frame capture shutter time can be extremely long (e.g. 1 second or more) because by definition, the scene is not moving. With a long shutter time, even very dim phosphorescent emission can be captured accurately.

Once the characters 702-703, props and the set 701 in the scene are thus prepared, they look almost exactly as they otherwise would look under the desired scene illumination when light panels 208-209 are on, but they phosphoresce in random patterns when the light panels 208-209 are turned off. 45 At this point all of the characters 702-703, props and the set 701 of the stop-motion animation can now be captured 3D using a configuration like that illustrated in FIGS. 2a and 2b and described in the co-pending applications. (FIGS. 7b-7e illustrate stop-motion animation stages with light panels 208- 50 209, dark cameras 204-205 and lit cameras 214-215 from FIGS. 2a and 2b surrounding the stop-motion animation characters 702-703 and set 701. For clarity, the connections to devices 208-209, 204-205 and 214-215 have been omitted from FIGS. 7b-7e, but in they would be hooked up as illus- 55 trated in FIGS. 2a and 2b.) Dark cameras 204-205 and lit cameras 214-215 are placed around the scene illustrated in FIG. 7b so as to capture whatever surfaces will be needed to be seen in the final animation. And then, rather than rapidly switching sync signals 221-223 at a high capture frame rate 60 (e.g. 90 fps), the sync signals are switched very slowly, and in fact may be switched by hand.

In one embodiment, the light panels 208-209 are left on while the animators adjust the positions of the characters 702-703, props or any changes to the set 701. Note that the 65 light panels 208-209 could be any illumination source, including incandescent lamps, because there is no require-

14

ment in stop-motion animation for rapidly turning on and off the illumination source. Once the characters **702-703**, props and set **701** are in position for the next frame, lit cam sync signal **223** is triggered (by a falling edge transition in the presently preferred embodiment) and all of the lit cameras **214-215** capture a frame for a specified duration based on the desired exposure time for the captured frames. In other embodiments, different cameras may have different exposure times based on individual exposure requirements.

Next, light panels 208-209 are turned off (either by sync signal 222 or by hand) and the lamps are allowed to decay until the scene is in complete darkness (e.g. incandescent lamps may take many seconds to decay). Then, dark cam sync signal 221 is triggered (by a falling edge transition in the presently preferred embodiment) and all of the dark cameras 208-209 capture a frame of the random phosphorescent patterns for a specified duration based on the desired exposure time for the captured frames. Once again, different cameras have different exposure times based on individual exposure requirements. As previously mentioned, in the case of very dim phosphorescent emissions, the exposure time may be quite long (e.g., a second or more). The upper limit of exposure time is primarily limited by the noise accumulation of the camera sensors. The captured dark frames are processed by data processing system 210 to produce 3D surface 207 and then to map the images captured by the lit cameras 214-215 onto the 3D surface 207 to create textured 3D surface 217. Then, the light panels, 208-9 are turned back on again, the characters 702-703, props and set 701 are moved again, and the process described in this paragraph is repeated until the entire shot is completed.

The resulting output is the successive frames of textured 3D surfaces of all of the characters 702-703, props and set 701 with areas of surfaces embedded or painted with phosphor that are in view of at least 2 dark cameras 204-205 at a non-oblique angle (e.g., <30 degrees from the optical axis of a camera). When these successive frames are played back at the desired frame rate (e.g., 24 fps), the animated scene will come to life, but unlike frames of a conventional stop-motion animation, the animation will be able to be viewed from any camera position, just by rendering this textured 3D surfaces from a chosen camera position. Also, if the camera position of the final animation is to be in motion during a frame sequence (e.g. if a camera is following a character 702-703), it is not necessary to have a physical camera moving in the scene. Rather, for each successive frame, the textured 3D surfaces of the scene are simply rendered from the desired camera position for that frame, using a 3D modeling/animation application software such as Maya (from Autodesk, Inc.).

In another embodiment, illustrated in FIGS. 7c-7e, some or all of the different characters 702-703, props, and/or sets 701 within a single stop-motion animation scene are shot separately, each in a configuration such as FIGS. 2a and 2b. For example, if a scene had man with leash 702 and his dog 703 walking down a city street set 701, the city street set 701, the man with leash 702, and the dog 703 would be shot individually, each with separate motion capture systems as illustrated in FIG. 7c (for city street set 701, FIG. 7d (for man with leash 702) and FIG. 7e (for dog 703)a. The stop-motion animation of the 2 characters 702-703 and 1 set 701 would each then be separately captured as individual textured 3D surfaces 217, in the manner described above. Then, with a 3D modeling and/ or animation application software the 2 characters 702-703 and 1 set 701 would be rendered together into a 3D scene. In one embodiment, the light panel 208-209 lighting the characters 702-703 and the set 701 could be configured to be the same, so the man with leash 702 and the dog 703 appear to be

15

illuminated in the same environment as the set 701. In another embodiment, flat lighting (i.e. uniform lighting to minimize shadows and highlights) is used, and then lighting (including shadows and highlights) is simulated by the 3D modeling/animation application software. Through the 3D modeling/animation application software the animators will be able to see how the characters 702-703 look relative to each other and the set 701, and will also be able to look at the characters 702-703 and set 701 from any camera angle they wish, without having to move any of the physical cameras 204-205 or 214-215 doing the capture.

This approach provides significant advantages to stop-motion animation. The following are some of the advantages of this approach: (a) individual characters 702-703 may be manipulated individually without worrying about the animator bumping into another character 702-703 or the characters 702-703 bumping into each other, (b) the camera position of the rendered frames may be chosen arbitrarily, including having the camera position move in successive frames, (c) the rendered camera position can be one where it would not be physically possible to locate a camera 705 in a conventional 20 stop-motion configuration (e.g. directly between 2 characters 702-703 that are close together, where there is no room for a camera 705), (d) the lighting, including highlights and shadows can be controlled arbitrarily, including creating lighting situations that are not physically possible to realize (e.g. making a character glow), (e) special effects can be applied to the characters 702-703 (e.g. a ghost character 702-703 can be made translucent when it is rendered into the scene), (f) a character 702-703 can remain in a physically stable position on the ground while in the scene it is not (e.g. a character 30 702-703 can be captured in an upright position, while it is rendered into the scene upside down in a hand stand, or rendered into the scene flying above the ground), (g) parts of the character 702-703 can be held up by supports that do not have phosphor on them, and as such will not be captured (and 35 will not have to be removed from the shot later in postproduction), (h) detail elements of a character 702-703, like mouth positions when the character 702-703 is speaking, can be rendered in by the 3D modeling/animation application, so they do not have be attached and then removed from the $^{\,40}$ character 702-703 during the animation, (i) characters 702-703 can be rendered into computer-generated 3D scenes (e.g. the man with leash 702 and dog 703 can be animated as clay animations, but the city street set 701 can be a computergenerated scene), (j) 3D motion blur can be applied to the 45 objects as they move (or as the rendered camera position moves), resulting in a smoother perception of motion to the animation, and also making possible faster motion without the perception of jitter.

Additional Phosphorescent Phosphors

In another embodiment, different phosphors other than ZnS:Cu are used as pigments with dyes for fabrics or other non-skin objects. ZnS:Cu is the preferred phosphor to use for 55 skin applications because it is FDA-approved as a cosmetic pigment. But a large variety of other phosphors exist that, while not approved for use on the skin, are in some cases approved for use within materials handled by humans. One such phosphor is SrAl₂O₄:Eu²⁺,Dy³⁺. Another is SrAl₂O₄: 60 Eu²⁺. Both phosphors have a much longer afterglow than ZnS:Cu for a given excitation.

Optimizing Phosphorescent Emission

Many phosphors that phosphoresce in visible light spectra are charged more efficiently by ultraviolet light than by vis16

ible light. This can be seen in chart 800 of FIG. 8 which show approximate excitation and emission curves of ZnS:Cu (which we shall refer to hereafter as "zinc sulfide") and various light sources. In the case of zinc sulfide, its excitation curve 811 spans from about 230 nm to 480 nm, with its peak at around 360 nm. Once excited by energy in this range, its phosphorescence curve 812 spans from about 420 nm to 650 nm, producing a greenish glow. The zinc sulfide phosphorescence brightness **812** is directly proportional to the excitation energy 811 absorbed by the zinc sulfide. As can be seen by excitation curve 811, zinc sulfide is excited with varying degrees of efficiency depending on wavelength. For example, at a given brightness from an excitation source (i.e. in the case of the presently preferred embodiment, light energy from light panels 208-209) zinc sulfide will absorb only 30% of the energy at 450 nm (blue light) that it will absorb at 360 nm (UVA light, commonly called "black light"). Since it is desirable to get the maximum phosphorescent emission 812 from the zinc sulfide (e.g. brighter phosphorescence will allow for smaller lens apertures and longer depth of field), clearly it is advantageous to excite the zinc sulfide with as much energy as possible. The light panels 208-209 can only produce up to a certain level of light output before the light becomes uncomfortable for the performers. So, to maximize the phosphorescent emission output of the zinc sulfide, ideally the light panels 208-209 should output light at wavelengths that are the most efficient for exciting zinc sulfide.

Other phosphors that may be used for non-skin phosphorescent use (e.g. for dyeing fabrics) also are excited best by ultraviolet light. For example, SrAl₂O₄:Eu²⁺,Dy³⁺ and SrAl₂O₄:Eu²⁺ are both excited more efficiently with ultraviolet light than visible light, and in particular, are excited quite efficiently by UVA (black light).

As can be seen in FIG. 3, a requirement for a light source used for the light panels 208-209 is that the light source can transition from completely dark to fully lit very quickly (e.g. on the order of a millisecond or less) and from fully lit to dark very quickly (e.g. also on the order of a millisecond or less). Most LEDs fulfill this requirement quite well, typically turning on an off on the order of microseconds. Unfortunately, though, current LEDs present a number of issues for use in general lighting. For one thing, LEDs currently available have a maximum light output of approximately 35 W. The BL-43F0-0305 from Lamina Ceramics, 120 Hancock Lane, Westampton, N.J. 08060 is one such RGB LED unit. For another, currently LEDs have special power supply requirements (in the case of the BL-43F0-0305, different voltage supplies are need for different color LEDs in the unit). In addition, current LEDs require very large and heavy heatsinks 50 and produce a great deal of heat. Each of these issues results in making LEDs expensive and somewhat unwieldy for lighting an entire motion capture stage for a performance. For example, if 3500 Watts were needed to light a stage, 100 35 W LED units would be needed.

But, in addition to these disadvantages, the only very bright LEDs currently available are white or RGB LEDs. In the case of both types of LEDs, the wavelengths of light emitted by the LED does not overlap with wavelengths where the zinc sulfide is efficiently excited. For example, in FIG. 8 the emission curve 823 of the blue LEDs in the BL-43F0-0305 LED unit is centered around 460 nm. It only overlaps with the tail end of the zinc sulfide excitation curve 811 (and the Red and Green LEDs don't excite the zinc sulfide significantly at all). So, even if the blue LEDs are very bright (to the point where they are as bright as is comfortable to the performer), only a small percentage of that light energy will excite the zinc sulfide, resulting in a relatively dim phosphorescence. Violet and

17

UVA ("black light") LEDs do exist, which would excite the zinc sulfide more efficiently, but they only currently are available at very low power levels, on the order of 0.1 Watts. To achieve 3500 Watts of illumination would require 35,000 such 0.1 Watt LEDs, which would be quite impractical and 5 prohibitively expensive.

Fluorescent Lamps As a Flashing Illumination Source

Other lighting sources exist that output light at wavelengths that are more efficiently absorbed by zinc sulfide. For example, fluorescent lamps (e.g. 482-S9 from Kino-Flo, Inc. 2840 North Hollywood Way, Burbank, Calif. 91505) are available that emit UVA (black light) centered around 350 nm 15 with an emission curve similar to 821, and Blue/violet fluorescent lamps (e.g. 482-S10-S from Kino-Flo) exist that emit bluish/violet light centered around 420 nm with an emission curve similar to 822. The emission curves 821 and 822 are much closer to the peak of the zinc sulfide excitation curve 20 **811**, and as a result the light energy is far more efficiently absorbed, resulting in a much higher phosphorescent emission 812 for a given excitation brightness. Such fluorescent bulbs are quite inexpensive (typically \$15/bulb for a 48" bulb), produce very little heat, and are very light weight. They 25 are also available in high wattages. A typical 4-bulb fluorescent fixture produces 160 Watts or more. Also, theatrical fixtures are readily available to hold such bulbs in place as staging lights. (Note that UVB and UVC fluorescent bulbs are also available, but UVB and UVC exposure is known to 30 present health hazards under certain conditions, and as such would not be appropriate to use with human or animal performers without suitable safety precautions.)

The primary issue with using fluorescent lamps is that they are not designed to switch on and off quickly. In fact, ballasts 35 (the circuits that ignite and power fluorescent lamps) typically turn the lamps on very slowly, and it is common knowledge that fluorescent lamps may take a second or two until they are fully illuminated.

FIG. 9 shows a diagrammatic view of a prior art fluorescent 40 lamp. The elements of the lamp are contained within a sealed glass bulb 910 which, in this example, is in the shape of a cylinder (commonly referred to as a "tube"). The bulb contains an inert gas 940, typically argon, and a small amount of mercury 930. The inner surface of the bulb is coated with a 45 phosphor 920. The lamp has 2 electrodes 905-906, each of which is coupled to a ballast through connectors 901-904. When a large voltage is applied across the electrodes 901-904, some of the mercury in the tube changes from a liquid to a gas, creating mercury vapor, which, under the right electri- 50 cal circumstances, emits ultraviolet light. The ultraviolet light excites the phosphor coating the inner surface of the bulb. The phosphor then fluoresces light at a higher wavelength than the excitation wavelength. A wide range of phosphors are available for fluorescent lamps with different wavelengths. For 55 example, phosphors that are emissive at UVA wavelengths and all visible light wavelengths are readily available off-theshelf from many suppliers.

Standard fluorescent ballasts are not designed to switch fluorescent lamps on and off quickly, but it is possible to 60 modify an existing ballast so that it does. FIG. 10 is a circuit diagram of a prior art 27 Watt fluorescent lamp ballast 1002 modified with an added sync control circuit 1001 of the present invention.

For the moment, consider only the prior art ballast circuit 65 **1002** of FIG. **10** without the modification **1001**. Prior art ballast **1002** operates in the following manner: A voltage

18

doubler circuit converts 120 VAC from the power line into 300 volts DC. The voltage is connected to a half bridge oscillator/driver circuit, which uses two NPN power transistors 1004-1005. The half bridge driver, in conjunction with a multi-winding transformer, forms an oscillator. Two of the transformer windings provide high drive current to the two power transistors 1004-1005. A third winding of the transformer is in line with a resonant circuit, to provide the needed feedback to maintain oscillation. The half bridge driver generates a square-shaped waveform, which swings from +300 volts during one half cycle, to zero volts for the next half cycle. The square wave signal is connected to an "LC" (i.e. inductor-capacitor) series resonant circuit. The frequency of the circuit is determined by the inductance Lres and the capacitance Cres. The fluorescent lamp 1003 is connected across the resonant capacitor. The voltage induced across the resonant capacitor from the driver circuit provides the needed high voltage AC to power the fluorescent lamp 1003. To kick the circuit into oscillation, the base of the power transistor 1005 is connected to a simple relaxation oscillator circuit. Current drawn from the 300 v supply is routed through a resistor and charges up a 0.1 uF capacitor. When the voltage across the capacitor reaches about 20 volts, a DIAC (a bilateral trigger diode) quickly switches and supplies power transistor 1005 with a current spike. This spike kicks the circuit into oscillation.

Synchronization control circuit 1001 is added to modify the prior art ballast circuit 1002 described in the previous paragraph to allow rapid on-and-off control of the fluorescent lamp 1003 with a sync signal. In the illustrated embodiment in FIG. 10, a sync signal, such as sync signal 222 from FIG. 2, is electrically coupled to the SYNC+ input. SYNC- is coupled to ground. Opto-isolator NEC PS2501-1 isolates the SYNC+ and SYNC- inputs from the high voltages in the circuit. The opto-isolator integrated circuit consists of a light emitting diode (LED) and a phototransistor. The voltage differential between SYNC+ and SYNC- when the sync signal coupled to SYNC+ is at a high level (e.g. ≥2.0V) causes the LED in the opto-isolator to illuminate and turn on the phototransistor in the opto-isolator. When this phototransistor is turned on, voltage is routed to the gate of an n-channel MOS-FET Q1 (Zetex Semiconductor ZVN4106F DMOS FET). MOSFET Q1 functions as a low resistance switch, shorting out the base-emitter voltage of power transistor 1005 to disrupt the oscillator, and turn off fluorescent lamp 1003. To turn the fluorescent lamp back on, the sync signal (such as 222) is brought to a low level (e.g. <0.8V), causing the LED in the opto-isolator to turn off, which turns off the opto-isolator phototransistor, which turns off MOSFET Q1 so it no longer shorts out the base-emitter voltage of power transistor 1005. This allows the kick start circuit to initialize ballast oscillation, and the fluorescent lamp 1003 illuminates.

This process repeats as the sync signal coupled to SYNC+ oscillates between high and low level. The synch control circuit 1001 combined with prior art ballast 1002 will switch fluorescent lamp 1003 on and off reliably, well in excess of 120 flashes per second. It should be noted that the underlying principles of the invention are not limited to the specific set of circuits illustrated in FIG. 10.

FIG. 11 shows the light output of fluorescent lamp 1003 when synch control circuit 1001 is coupled to prior art ballast 1002 and a sync signal 222 is coupled to circuit 1001 as described in the previous paragraph. Traces 1110 and 1120 are oscilloscope traces of the output of a photodiode placed on the center of the bulb of a fluorescent lamp using the prior art ballast circuit 1002 modified with the sync control circuit 1001 of the present invention. The vertical axis indicates the

19

brightness of lamp 1003 and the horizontal axis is time. Trace 1110 (with 2 milliseconds/division) shows the light output of fluorescent lamp 1003 when sync signal 222 is producing a 60 Hz square wave. Trace 1120 (with the oscilloscope set to 1 millisecond/division and the vertical brightness scale reduced 5 by 50%) shows the light output of lamp 1003 under the same test conditions except now sync signal 222 is producing a 250 Hz square wave. Note that the peak 1121 and minimum 1122 (when lamp 1003 is off and is almost completely dark) are still both relatively flat, even at a much higher switching 10 frequency. Thus, the sync control circuit 1001 modification to prior art ballast 1002 produces dramatically different light output than the unmodified ballast 1002, and makes it possible to achieve on and off switching of fluorescent lamps at high frequencies as required by the motion capture system 15 illustrated in FIG. 2 with timing similar to that of FIG. 3.

Although the modified circuit shown in FIG. 10 will switch a fluorescent lamp 1003 on and off rapidly enough for the requirements of a motion capture system such as that illustrated in FIG. 2, there are certain properties of fluorescent 20 lamps that may be modified for use in a practical motion capture system.

FIG. 12 illustrates one of these properties. Traces 1210 and 1220 are the oscilloscope traces of the light output of a General Electric Gro and Sho fluorescent lamp 1003 placed in 25 circuit 1002 modified by circuit 1001, using a photodiode placed on the center of the bulb. Trace 1210 shows the light output at 1 millisecond/division, and Trace 1220 shows the light output at 20 microseconds/division. The portion of the waveform shown in Trace 1220 is roughly the same as the 30 dashed line area 1213 of Trace 1210. Sync signal 222 is coupled to circuit 1002 as described previously and is producing a square wave at 250 Hz. Peak level 1211 shows the light output when lamp 1003 is on and minimum 1212 shows the light output when lamp 1003 is off. While Trace 1210 35 shows the peak level 1211 and minimum 1212 as fairly flat, upon closer inspection with Trace 1220, it can be seen that when the lamp 1003 is turned off, it does not transition from fully on to completely off instantly. Rather, there is a decay curve of approximately 200 microseconds (0.2 milliseconds) 40 in duration. This is apparently due to the decay curie of the phosphor coating the inside of the fluorescent bulb (i.e. when the lamp 1003 is turned off, the phosphor continues to fluoresce for a brief period of time). So, when sync signal 222 turns off the modified ballast 1001-1002, unlike LED lights 45 which typically switch off within a microsecond, fluorescent lamps take a short interval of time until they decay and become dark.

There exists a wide range of decay periods for different brands and types of fluorescent lamps, from as short as 200 50 microseconds, to as long as over a millisecond. To address this property of fluorescent lamps, one embodiment of the invention adjusts signals 221-223. This embodiment will be discussed shortly.

Another property of fluorescent lamps that impacts their usability with a motion capture system such as that illustrated in FIG. 2 is that the electrodes within the bulb are effectively incandescent filaments that glow when they carry current through them, and like incandescent filaments, they continue to glow for a long time (often a second or more) after current is removed from them. So, even if they are switched on and off rapidly (e.g. at 90 Hz) by sync signal 222 using ballast 1002 modified by circuit 1001, they continue to glow for the entire dark interval 302. Although the light emitted from the fluorescent bulb from the glowing electrodes is very dim relative to the fully illuminated fluorescent bulb, it is still is a significant amount of light, and when many fluorescent bulbs are in

20

use at once, together the electrodes add up to a significant amount of light contamination during the dark interval 302, where it is advantageous for the room to be as dark as possible.

FIG. 13 illustrates one embodiment of the invention which addresses this problem. Prior art fluorescent lamp 1350 is shown in a state 10 milliseconds after the lamp as been shut off. The mercury vapor within the lamp is no longer emitting ultraviolet light and the phosphor lining the inner surface of the bulb is no longer emitting a significant amount of light. But the electrodes 1351-1352 are still glowing because they are still hot. This electrode glowing results in illuminated regions 1361-1362 near the ends of the bulb of fluorescent lamp 1350.

Fluorescent lamp 1370 is a lamp in the same state as prior art lamp 1350, 10 milliseconds after the bulb 1370 has been shut off, with its electrodes 1371-1372 still glowing and producing illuminated regions 1381-1382 near the ends of the bulb of fluorescent lamp 1370, but unlike prior art lamp 1350, wrapped around the ends of lamp 1370 is opaque tape 1391 and 1392 (shown as see-through with slanted lines for the sake of illustration). In the presently preferred embodiment black gaffers' tape is used, such as 4" P-665 from Permacel, A Nitto Denko Company, US Highway No. 1, P.O. Box 671, New Brunswick, N.J. 08903. The opaque tape 1391-1392 serves to block almost all of the light from glowing electrodes 1371-1372 while blocking only a small amount of the overall light output of the fluorescent lamp when the lamp is on during lit interval 301. This allows the fluorescent lamp to become much darker during dark interval 302 when being flashed on and off at a high rate (e.g. 90 Hz). Other techniques can be used to block the light from the glowing electrodes, including other types of opaque tape, painting the ends of the bulb with an opaque paint, or using an opaque material (e.g. sheets of black metal) on the light fixtures holding the fluorescent lamps so as to block the light emission from the parts of the fluorescent lamps containing electrodes.

Returning now to the light decay property of fluorescent lamps illustrated in FIG. 12, if fluorescent lamps are used for light panels 208-209, the synchronization signal timing shown in FIG. 3 will not produce optimal results because when Light Panel sync signal 222 drops to a low level on edge 332, the fluorescent light panels 208-209 will take time to become completely dark (i.e. edge 342 will gradually drop to dark level). If the Dark Cam Sync Signal triggers the grayscale cameras 204-205 to open their shutters at the same time as edge 322, the grayscale camera will capture some of the scene lit by the afterglow of light panels 208-209 during its decay interval. Clearly, FIG. 3's timing signals and light output behavior is more suited for light panels 208-209 using a lighting source like LEDs that have a much faster decay than fluorescent lamps.

Synchronization Timing for Fluorescent Lamps

FIG. 14 shows timing signals which are better suited for use with fluorescent lamps and the resulting light panel 208-209 behavior (note that the duration of the decay curve 1442 is exaggerated in this and subsequent timing diagrams for illustrative purposes). The rising edge 1434 of sync signal 222 is roughly coincident with rising edge 1414 of lit cam sync signal 223 (which opens the lit camera 214-215 shutters) and with falling edge 1424 of dark cam sync signal 223 (which closes the dark camera 204-205 shutters). It also causes the fluorescent lamps in the light panels 208-209 to illuminate quickly. During lit time interval 1401, the lit cameras 214-215

21 capture a color image illuminated by the fluorescent lamps,

which are emitting relatively steady light as shown by light output level 1443.

At the end of lit time interval 1401, the falling edge 1432 of sync signal 222 turns off light panels 208-209 and is roughly 5 coincident with the rising edge 1412 of lit cam sync signal 223, which closes the shutters of the lit cameras 214-215. Note, however, that the light output of the light panels 208-209 does not drop from lit to dark immediately, but rather slowly drops to dark as the fluorescent lamp phosphor decays 10 as shown by edge 1442. When the light level of the fluorescent lamps finally reaches; dark level 1441, dark cam sync signal 221 is dropped from high to low as shown by edge 1422, and this opens the shutters of dark cameras 204-205. This way the dark cameras 204-205 only capture the emissions from the 15 phosphorescent makeup, paint or dye, and do not capture the reflection of light from any objects illuminated by the fluorescent lamps during the decay interval 1442. So, in this embodiment the dark interval 1402 is shorter than the lit interval 1401, and the dark camera 204-205 shutters are open 20 for a shorter period of time than the lit camera 214-205 shutters.

Another embodiment is illustrated in FIG. 15 where the dark interval 1502 is longer than the lit interval 1501. The advantage of this embodiment is it allows for a longer shutter 25 time for the dark cameras 204-205. In this embodiment, light panel sync signal 222 falling edge 1532 occurs earlier which causes the light panels 208-209 to turn off. Lit cam sync signal 223 rising edge 1512 occurs roughly coincident with falling edge 1532 and closes the shutters on the lit cameras 30 214-5. The light output from the light panel 208-209 fluorescent lamps begins to decay as shown by edges 1542 and finally reaches dark level 1541. At this point dark cam sync signal 221 is transitions to a low state on edge 1522, and the dark cameras 204-205 open their shutters and capture the 35 phosphorescent emissions.

Note that in the embodiments shown in both FIGS. 14 and 15 the lit camera 214-215 shutters were only open while the light output of the light panel 208-209 fluorescent lamps was at maximum. In another embodiment, the lit camera 214-215 40 shutters can be open during the entire time the fluorescent lamps are emitting any light, so as to maximize the amount of light captured. In this situation, however, the phosphorescent makeup, paint or dye in the scene will become more prominent relative to the non-phosphorescent areas in the scene 45 because the phosphorescent areas will continue to emit light fairly steadily during the fluorescent lamp decay while the non-phosphorescent areas will steadily get darker. The lit cameras 214-215 will integrate this light during the entire time their shutters are open.

In yet another embodiment the lit cameras 214-215 leave their shutters open for some or all of the dark time interval 1502. In this case, the phosphorescent areas in the scene will appear very prominently relative to the non-phosphorescent areas since the lit cameras 214-215 will integrate the light 55 during the dark time interval 1502 with the light from the lit time interval 1501.

Because fluorescent lamps are generally not sold with specifications detailing their phosphor decay characteristics, it is necessary to determine the decay characteristics of fluo- 60 rescent lamps experimentally. This can be readily done by adjusting the falling edge 1522 of sync signal 221 relative to the falling edge 1532 of sync signal 222, and then observing the output of the dark cameras 204-205. For example, in the embodiment shown in FIG. 15, if edge 1522 falls too soon 65 after edge 1532 during the fluorescent light decay 1542, then non-phosphorescent objects will be captured in the dark cam22

eras 204-205. If the edge 1522 is then slowly delayed relative to edge 1532, the non-phosphorescent objects in dark camera 204-205 will gradually get darker until the entire image captured is dark, except for the phosphorescent objects in the image. At that point, edge 1522 will be past the decay interval 1542 of the fluorescent lamps. The process described in this paragraph can be readily implemented in an application on a general-purpose computer that controls the output levels of sync signals 221-223.

In another embodiment the decay of the phosphor in the fluorescent lamps is such that even after edge 1532 is delayed as long as possible after 1522 to allow for the dark cameras 204-205 to have a long enough shutter time to capture a bright enough image of phosphorescent patterns in the scene, there is still a small amount of light from the fluorescent lamp illuminating the scene such that non-phosphorescent objects in the scene are slightly visible. Generally, this does not present a problem for the pattern processing techniques described in the co-pending applications identified above. So long as the phosphorescent patterns in the scene are substantially brighter than the dimly-lit non-fluorescent objects in the scene, the pattern processing techniques will be able to adequately correlate and process the phosphorescent patterns and treat the dimly lit non-fluorescent objects as noise.

Synchronizing Cameras with Lower Frame Rates than The Light Panel Flashing Rate

In another embodiment the lit cameras 214-215 and dark cameras 204-205 are operated at a lower frame rate than the flashing rate of the light panels 208-209. For example, the capture frame rate may be 30 frames per second (fps), but so as to keep the flashing of the light panels 208-209 about the threshold of human perception, the light panels 208-209 are flashed at 90 flashes per second. This situation is illustrated in FIG. 16. The sync signals 221-3 are controlled the same as the are in FIG. 15 for lit time interval 1601 and dark time interval 1602 (light cycle 0), but after that, only light panel 208-9 sync signal 222 continues to oscillate for light cycles 1 and 2. Sync signals 221 and 223 remain in constant high state 1611 and 1626 during this interval. Then during light cycle 3, sync signals 221 and 223 once again trigger with edges 1654 and 1662, opening the shutters of lit cameras 214-215 during lit time interval 1604, and then opening the shutters of dark cameras 204-205 during dark time interval 1605.

In another embodiment where the lit cameras 214-215 and dark cameras 204-205 are operated at a lower frame rate than the flashing rate of the light panels 208-209, sync signal 223 causes the lit cameras 214-215 to open their shutters after sync signal 221 causes the dark cameras 204-205 to open their shutters. This is illustrated in FIG. 17. An advantage of this timing arrangement over that of FIG. 16 is the fluorescent lamps transition from dark to lit (edge 1744) more quickly than they decay from lit to dark (edge 1742). This makes it possible to abut the dark frame interval 1702 more closely to the lit frame interval 1701. Since captured lit textures are often used to be mapped onto 3D surfaces reconstructed from dark camera images, the closer the lit and dark captures occur in time, the closer the alignment will be if the captured object is in motion.

In another embodiment where the lit cameras 214-215 and dark cameras 204-205 are operated at a lower frame rate than the flashing rate of the light panels 208-209, the light panels 208-209 are flashed with varying light cycle intervals so as to allow for longer shutter times for either the dark cameras 204-205 or lit cameras 214-215, or to allow for longer shutters times for both cameras. An example of this embodiment is 23

illustrated in FIG. 18 where the light panels 208-209 are flashed at 3 times the frame rate of cameras 204-205 and 214-215, but the open shutter interval 1821 of the dark cameras 204-205 is equal to almost half of the entire frame time **1803**. This is accomplished by having light panel **208-209** 5 sync signal 222 turn off the light panels 208-209 for a long dark interval 1802 while dark cam sync signal 221 opens the dark shutter for the duration of long dark interval 1802. Then sync signal 222 turns the light panels 208-209 on for a brief lit interval 1801, to complete light cycle 0 and then rapidly flashes the light panels 208-209 through light cycles 1 and 2. This results in the same number of flashes per second as the embodiment illustrated in FIG. 17, despite the much longer dark interval 1802. The reason this is a useful configuration is that the human visual system will still perceive rapidly flash- 15 ing lights (e.g. at 90 flashes per second) as being lit continuously, even if there are some irregularities to the flashing cycle times. By varying the duration of the lit and dark intervals of the light panels 208-209, the shutter times of either the dark cameras 204-205, lit cameras 214-215 or both can be length- 20 ened or shortened, while still maintaining the human perception that light panels 208-209 are continuously lit.

High Aggregate Frame Rates from Cascaded Cameras

FIG. 19 illustrates another embodiment where lit cameras 1941-1946 and dark cameras 1931-1936 are operated at a lower frame rate than the flashing rate of the light panels **208-209**. FIG. **19** illustrates a similar motion capture system 30 configuration as FIG. 2a, but given space limitations in the diagram only the light panels, the cameras, and the synchronization subsystem is shown. The remaining components of FIG. 2a that are not shown (i.e. the interfaces from the cameras to their camera controllers and the data processing sub- 35 system, as well as the output of the data processing subsystem) are a part of the full configuration that is partially shown in FIG. 19, and they are coupled to the components of FIG. 19 in the same manner as they are to the components of FIG. 2a. Also, FIG. 19 shows the Light Panels 208-209 in 40 their "lit" state. Light Panels 208-209 can be switched off by sync signal 222 to their "dark" state, in which case performer 202 would no longer be lit and only the phosphorescent pattern applied to her face would be visible, as it is shown in FIG. **2***b*.

FIG. 19 shows 6 lit cameras 1941-1946 and 6 dark cameras 1931-1936. In the presently preferred embodiment color cameras are used for the lit cameras 1941-1946 and grayscale cameras are used for the dark camera 1931-1936, but either type could be used for either purpose. The shutters on the 50 cameras 1941-1946 and 1931-1936 are driven by sync signals 1921-1926 from sync generator PCI card 224. The sync generator card is installed in sync generator PC 220, and operates as previously described. (Also, in another embodiment it may be replaced by using the parallel port outputs of sync generator PC 220 to drive sync signals 1921-1926, and in this case, for example, bit 0 of the parallel port would drive sync signals 1921-1926, respectively.)

Unlike the previously described embodiments, where there 60 is one sync signal 221 for the dark cameras and one sync signal 223 for the lit cameras, in the embodiment illustrated in FIG. 19, there are 3 sync signals 1921-1923 for the dark cameras and 3 sync signals 1924-1926 for the dark cameras. The timing for these sync signals 1921-1926 is shown in FIG. 65 20. When the sync signals 1921-1926 are in a high state they causes the shutters of the cameras attached to them to be

24

closed, when the sync signals are in a low state, they cause the shutters of the cameras attached to them to be open.

In this embodiment, as shown in FIG. 20, the light panels 208-209 are flashed at a uniform 90 flashes per second, as controlled by sync signal 222. The light output of the light panels 208-209 is also shown, including the fluorescent lamp decay 2042. Each camera 1931-1936 and 1941-1946 captures images at 30 frames per second (fps), exactly at a 1:3 ratio with the 90 flashes per second rate of the light panels. Each camera captures one image per each 3 flashes of the light panels, and their shutters are sequenced in a "cascading" order, as illustrated in FIG. 20. A sequence of 3 frames is captured in the following manner:

Sync signal 222 transitions with edge 2032 from a high to low state 2031. Low state 2031 turns off light panels 208-209, which gradually decay to a dark state 2041 following decay curve 2042. When the light panels are sufficiently dark for the purposes of providing enough contrast to separate the phosphorescent makeup, paint, or dye from the non-phosphorescent surfaces in the scene, sync signal 1921 transitions to low state 2021. This causes dark cameras 1931-1932 to open their shutters and capture a dark frame. After the time interval 2002, sync signal 222 transitions with edge 2034 to high state 2033 which causes the light panels 208-209 to transition with 25 edge 2044 to lit state 2043. Just prior to light panels 208-209 becoming lit, sync signal 1921 transitions to high state 2051 closing the shutter of dark cameras 1931-1932. Just after the light panels 208-209 become lit, sync signal 1924 transition to low state 2024, causing the shutters on the lit cameras 1941-1942 to open during time interval 2001 and capture a lit frame. Sync signal 222 transitions to a low state, which turns off the light panels 208-9, and sync signal 1924 transitions to a high state at the end of time interval 2001, which closes the shutters on lit cameras 1941-1942.

The sequence of events described in the preceding paragraphs repeats 2 more times, but during these repetitions sync signals 1921 and 1924 remain high, keeping their cameras shutters closed. For the first repetition, sync signal 1922 opens the shutter of dark cameras 1933-1934 while light panels 208-209 are dark and sync signal 1925 opens the shutter of lit cameras 1943-1944 while light panels 208-209 are lit. For the second repetition, sync signal 1923 opens the shutter of dark cameras 1935-1936 while light panels 208-209 are dark and sync signal 1926 opens the shutter of lit cameras 1945-1946 while light panels 208-209 are lit.

Then, the sequence of events described in the prior 2 paragraphs continues to repeat while the motion capture session illustrated in FIG. 19 is in progress, and thus a "cascading" sequence of camera captures allows 3 sets of dark and 3 sets of lit cameras to capture motion at 90 fps (i.e. equal to the light panel flashing rate of 90 flashes per second), despite the fact each camera is only capturing images at 30 fps. Because each camera only captures 1 of every 3 frames, the captured frames stored by the data processing system 210 are then interleaved so that the stored frame sequence at 90 fps has the frames in proper order in time. After that interleaving operation is complete, the data processing system will output reconstructed 3D surfaces 207 and textured 3D surfaces 217 at 90 fps.

Although the "cascading" timing sequence illustrated in FIG. 20 will allow cameras to operate at 30 fps while capturing images at an aggregate rate of 90 fps, it may be desirable to be able to switch the timing to sometimes operate all of the cameras 1921-1923 and 1924-1926 synchronously. An example of such a situation is for the determination of the relative position of the cameras relative to each other. Precise knowledge of the relative positions of the dark cameras 1921-

25

1923 is used for accurate triangulation between the cameras, and precise knowledge of the position of the lit cameras 1924-1926 relative to the dark cameras 1921-1923 is used for establishing how to map the texture maps captured by the lit cameras 1924-1926 onto the geometry reconstructed from the 5 images captured by the dark cameras 1921-1923. One prior art method (e.g. that is used to calibrate cameras for the motion capture cameras from Motion Analysis Corporation) to determine the relative position of fixed cameras is to place a known object (e.g. spheres on the ends of a rods in a rigid array) within the field of view of the cameras, and then synchronously (i.e. with the shutters of all cameras opening and closing simultaneously) capture successive frames of the image of that known object by all the cameras as the object is in motion. By processing successive frames from all of the 15 cameras, it is possible to calculate the relative position of the cameras to each other. But for this method to work, all of the cameras need to be synchronized so that they capture images simultaneously. If the camera shutters do not open simultaneously, then when each non-simultaneous shutter opens, its 20 camera will capture the moving object at a different position in space than other cameras whose shutters open at different times. This will make it more difficult (or impossible) to precisely determine the relative position of all the cameras to each other.

FIG. 21 illustrates in another embodiment how the sync signals 1921-6 can be adjusted so that all of the cameras 1931-1936 and 1941-1946 open their shutters simultaneously. Sync signals 1921-1926 all transition to low states 2121-2126 during dark time interval 2102. Although the light 30 panels 208-209 would be flashed 90 flashes a second, the cameras would be capturing frames synchronously to each other at 30 fps. (Note that in this case, the lit cameras 1941-1946 which, in the presently preferred embodiment are color cameras, also would be capturing frames during the dark 35 interval 2102 simultaneously with the dark cameras 1931-1936.) Typically, this synchronized mode of operation would be done when a calibration object (e.g. an array of phosphorescent spheres) was placed within the field of view of some or all of the cameras, and potentially moved through succes- 40 sive frames, usually before or after a motion capture of a performer. In this way, the relative position of the cameras could determined while the cameras are running synchronously at 30 fps, as shown in FIG. 21. Then, the camera timing would be switched to the "cascading" timing shown in FIG. 45 20 to capture a performance at 90 fps. When the 90 fps frames are reconstructed by data processing system 210, then camera position information, determined previously (or subsequently) to the 90 fps capture with the synchronous mode time shown in FIG. 21, will be used to both calculate the 3D 50 surface 207 and map the captured lit frame textures onto the 3D surface to create textured 3D surface 217

When a scene is shot conventionally using prior art methods and cameras are capturing only 2D images of that scene, the "cascading" technique to use multiple slower frame rate 55 cameras to achieve a higher aggregate frame rate as illustrated in FIGS. 19 and 20 will not produce high-quality results. The reason for this is each camera in a "cascade" (e.g. cameras 1931, 1933 and 1935) will be viewing the scene from a different point of view. If the captured 30 fps frames of each 60 camera are interleaved together to create a 90 fps sequence of successive frames in time, then when the 90 fps sequence is viewed, it will appear to jitter, as if the camera was rapidly jumping amongst multiple positions. But when slower frame rate cameras are "cascaded" to achieve a higher aggregate 65 frame rate as illustrate in FIGS. 19 and 20 for the purpose capturing the 3D surfaces of objects in a scene, as described

26

herein and in combination with the methods described in the co-pending applications, the resulting 90 fps interleaved 3D surfaces 207 and textured 3D surfaces 217 do not exhibit iitter at all, but rather look completely stable. The reason is the particular position of the cameras 1931-1936 and 1941-1946 does not matter in the reconstruction 3D surfaces, just so long as the at least a pair of dark cameras 1931-1936 during each dark frame interval 2002 has a non-oblique view (e.g. <30 degrees) of the surface area (with phosphorescent makeup, paint or dye) to be reconstructed. This provides a significant advantage over conventional prior art 2D motion image capture (i.e. commonly known as video capture), because typically the highest resolution sensors commercially available at a given time have a lower frame rate than commercially available lower resolution sensors. So, 2D motion image capture at high resolutions is limited to the frame rate of a single high resolution sensor. A 3D motion surface capture at high resolution, under the principles described herein, is able to achieve n times the frames rate of a single high resolution sensor, where n is the number of camera groups "cascaded" together, per the methods illustrated in FIGS. 19 and 20.

Color Mapping of Phosphor Brightness

Ideally, the full dynamic range, but not more, of dark cameras 204-205 should be utilized to achieve the highest quality pattern capture. For example, if a pattern is captured that is too dark, noise patterns in the sensors in cameras 204-205 may become as prominent as captured patterns, resulting in incorrect 3D reconstruction. If a pattern is too bright, some areas of the pattern may exceed the dynamic range of the sensor, and all pixels in such areas will be recorded at the maximum brightness level (e.g. 255 in an 8-bit sensor), rather than at the variety or brightness levels that actually make up that area of the pattern. This also will result in incorrect 3D reconstruction. So, prior to capturing a pattern, per the techniques described herein, it is advantageous to try to make sure the brightness of the pattern throughout is not too dark, nor too bright (e.g. not reaching the maximum brightness level of the camera sensor).

When phosphorescent makeup is applied to a performer, or when phosphorescent makeup, paint or dye is applied to an object, it is difficult for the human eye to evaluate whether the phosphor application results in a pattern captured by the dark cameras 204-205 that is bright enough in all locations or too bright in some locations. FIG. 22 image 2201 shows a cylinder covered in a random pattern of phosphor. It is difficult, when viewing this image on a computer display (e.g. an LCD monitor) to determine precisely if there are parts of the pattern that are too bright (e.g. location 2220) or too dark (e.g. location 2210). There are many reasons for this. Computer monitors often do not have the same dynamic range as a sensor (e.g. a computer monitor may only display 128 unique gray levels, while the sensor captures 256 gray levels). The brightness and/or contrast may not be set correctly on the monitor. Also, the human eye may have trouble determining what constitutes a maximum brightness level because the brain may adapt to the brightness it sees, and consider whatever is the brightest area on the screen to be the maximum brightness. For all of these reasons, it is helpful to have an objective measure of brightness that humans can readily evaluate when applying phosphorescent makeup, paint or dye. Also, it is helpful to have an objective measure brightness as the lens aperture and/or gain is adjusted on dark cameras 204-205 and/or the brightness of the light panels 208-209 is adjusted.

Image 2202 shows such an objective measure. It shows the same cylinder as image 2201, but instead of showing the

27

brightness of each pixel of the image as a grayscale level (in this example, from 0 to 255), it shows it as a color. Each color represents a range of brightness. For example, in image 2202 blue represents brightness ranges 0-32, orange represents brightness ranges 192-223 and dark red represents brightness 5 ranges 224-255. Other colors represent other brightness ranges. Area 2211, which is blue, is now clearly identifiable as an area that is very dark, and area 2221, which is dark red, is now clearly identifiable as an area that is very bright. These determinations can be readily made by the human eye, even if the dynamic range of the display monitor is less than that of the sensor, or if the display monitor is incorrectly adjusted, or if the brain of the observer adapts to the brightness of the display. With this information the human observer can change the application of phosphorescent makeup, dye or paint. The 15 human observer can also adjust the aperture and/or the gain setting on the cameras 204-205 and/or the brightness of the light panels 208-209.

In one embodiment image 2202 is created by application software running on one camera controller computer 225 and 20 is displayed on a color LCD monitor attached to the camera controller computer 225. The camera controller computer 225 captures a frame from a dark camera 204 and places the pixel values of the captured frame in an array in its RAM. For example, if the dark cameras 204 is a 640×480 grayscale 25 effect of assigning each single hue to a range of brightnesses. camera with 8 bits/pixel, then the array would be a 640×480 array of 8-bit bytes in RAM. Then, the application takes each pixel value in the array and uses it as an index into a lookup table of colors, with as many entries as the number of possible pixel values. With 8 bits/pixel, the lookup table has 256 30 entries. Each of the entries in the lookup table is pre-loaded (by the user or the developer of the application) with the desired Red, Green, Blue (RGB) color value to be displayed for the given brightness level. Each brightness level may be given a unique color, or a range of brightness levels can share 35 a unique color. For example, for image 2202, lookup table entries 0-31 are all loaded with the RGB value for blue, entries 192-223 are loaded with the RGB value for orange and entries 224-255 are loaded with the RGB value for dark red. Other entries are loaded with different RGB color values. The 40 application uses each pixel value from the array (e.g. 640× 480 of 8-bit grayscale values) of the captured frame as an index into this color lookup take, and forms a new array (e.g. 640×480 of 24-bit RGB values) of the looked-up colors. This new array of look-up colors is then displayed, producing a 45 color image such as 1102.

If a color camera (either lit camera 214 or dark camera 204) is used to capture the image to generate an image such as 2202, then one step is first performed after the image is captured find before it is processed as described in the pre- 50 ceding paragraph. The captured RGB output of the camera is stored in an array in camera controller computer 225 RAM (e.g. 640×480 with 24 bits/pixel). The application running on camera controller computer 225 then calculates the average brightness of each pixel by averaging the Red, Green and 55 Blue values of each pixel (i.e. Average=(R+G+B)/3), and places those averages in a new array (e.g. 640×480 with 8 bits/pixel). This array of Average pixel brightnesses (the "Average array") will soon be processed as if it were the pixel output of a grayscale camera, as described in the prior para- 60 graph, to produce a color image such as 2202. But, first there is one more step: the application examines each pixel in the captured RGB array to see if any color channel of the pixel (i.e. R, G, or B) is at a maximum brightness value (e.g. 255). If any channel is, then the application sets the value in the 65 Average array for that pixel to the maximum brightness value (e.g. 255). The reason for this is that it is possible for one color

28

channel of a pixel to be driven beyond maximum brightness (but only output a maximum brightness value), while the other color channels are driven by relatively dim brightness. This may result in an average calculated brightness for that pixel that is a middle-range level (and would not be considered to be a problem for good-quality pattern capture). But, if any of the color channels has been overdriven in a given pixel, then that will result in an incorrect pattern capture. So, by setting the pixel value in the Average array to maximum brightness, this produces a color images 2202 where that pixel is shown to be at the highest brightness, which would alert a human observer of image 1102 of the potential of a problem for a high-quality pattern capture.

It should be noted that the underlying principles of the invention are not limited to the specific color ranges and color choices illustrated in FIG. 22. Also, other methodologies can be used to determine the colors in 2202, instead of using only a single color lookup table. For example, in one embodiment the pixel brightness (or average brightness) values of a captured image is used to specify the hue of the color displayed. In another embodiment, a fixed number of lower bits (e.g. 4) of the pixel brightness (or average brightness) values of a captured image are set to zeros, and then the resulting numbers are used to specify the hue for each pixel. This has the

Surface Reconstruction from Multiple Range Data Sets

Correlating lines or random patterns captured by one camera with images from other cameras as described above provides range information for each camera. In one embodiment of the invention, range information from multiple cameras is combined in three steps: (1) treat the 3d capture volume as a scalar field; (2) use a "Marching Cubes" (or a related "Marching Tetrahedrons") algorithm to find the isosurface of the scalar field and create a polygon mesh representing the surface of the subject; and (3) remove false surfaces and simplify the mesh. Details associated with each of these steps is provided below.

The scalar value of each point in the capture volume (also called a voxel) is the weighted sum of the scalar values from each camera. The scalar value for a single camera for points near the reconstructed surface is the best estimate of the distance of that point to the surface. The distance is positive for points inside the object and negative for points outside the object. However, points far from the surface are given a small negative value even if they are inside the object.

The weight used for each camera has two components. Cameras that lie in the general direction of the normal to the surface are given a weight of 1. Cameras that lie 90 degrees to the normal are given a weight of 0. A function is used of the form: $n_i = \cos^2 a_i$, where n_i is the normal weighting function, and a, is the angle between the camera's direction and the surface normal. This is illustrated graphically in FIG. 23.

The second weighting component is a function of the distance. The farther the volume point is from the surface the less confidence there is in the accuracy of the distance estimate. This weight decreases significantly faster than the distance increases. A function is used of the form: $w_i = 1/(d_i^2 + 1)$, where w, is the weight and d, is the distance. This is illustrated graphically in FIG. 24. This weight is also used to differentiate between volume points that are "near to" and "far from" the surface. The value of the scalar field for camera i, is a function of the form: $s_i = (d_i * w_i - k * (1 - w_i)) * n_i$, where d_i is the distance from the volume point to the surface, w, is the distance weighting function, k is the scalar value for points "far

29

away", and n, is the normal weighting function. This is illustrated graphically in FIG. 25. The value of the scalar field is the weighted sum of the scalar fields for all cameras: s=sum (s,*w). See, e.g., A Volumetric Method for Building Complex Models from Range Images Brian Curless and Marc Levoy, Stanford University, http://graphics.stanford.edu/papers/volrange/paper1level/paper.html, which is incorporated herein by reference.

It should be noted that other known functions with similar characteristics to the functions described above may also be employed. For example, rather than a cosine-squared function as described above, a cosine squared function with a threshold may be employed. In fact, virtually any other function which produces a graph shaped similarly to those illustrated in FIGS. 23-25 may be used (e.g., a graph which falls towards zero at a high angle).

In one embodiment of the invention, the "Marching Cubes" algorithm and its variant "Marching Tetrahedrons" finds the See, e.g., Lorensen, W. E. and Cline, H. E., Marching Cubes: a high resolution 3D surface reconstruction algorithm, Computer Graphics, Vol. 21, No. 4, pp 163-169 (Proc. of SIG-GRAPH), 1987, which is incorporated herein by reference. A volume is divided up into cubes. The scalar field is known or 25 calculated as above for each corner of a cube. When some of the corners have positive values and some have negative values it is known that the surface passes through the cube. The standard algorithm interpolates where the surface crosses each edge. One embodiment of the invention improves on this 30 by using an improved binary search to find the crossing to a high degree of accuracy. In so doing, the scalar field is calculated for additional points. The computational load occurs only along the surface and greatly improves the quality of the resulting mesh. Polygons are added to the surface according 35 to tables. The "Marching Tetrahedrons" variation divides each cube into six tetrahedrons. The tables for tetrahedrons are much smaller and easier to implement than the tables for cubes. In addition, Marching Cubes has an ambiguous case not present in Marching Tetrahedrons.

The resulting mesh often has a number of undesirable characteristics. Often there is a ghost surface behind this desired surface. There are often false surfaces forming a halo around the true surface. And finally the vertices in the mesh are not uniformly spaced. The ghost surface and most of the 45 false surfaces can be identified and hence removed with two similar techniques. Each vertex in the reconstructed surface is checked against the range information from each camera. If the vertex is close to the range value for a sufficient number of cameras (e.g., 1-4 cameras) confidence is high that this vertex 50 is good. Vertices that fail this check are removed. Range information generally doesn't exist for every point in the field of view of the camera. Either that point isn't on the surface or that part of the surface isn't painted. If a vertex falls in this "no data" region for too many cameras (e.g., 1-4 cameras), con- 55 fidence is low that it should be part of the reconstructed surface. Vertices that fail this second test are also removed. This test makes assumptions about, and hence restrictions on, the general shape of the object to be reconstructed. It works well in practice for reconstructing faces, although the under- 60 lying principles of the invention are not limited to any particular type of surface. Finally, the spacing of the vertices is made more uniform by repeatedly merging the closest pair of vertices connected by an edge in the mesh. The merging process is stopped when the closest pair is separated by more 65 than some threshold value. Currently, 0.5 times the grid spacing is known to provide good results.

30

FIG. 26 is a flowchart which provides an overview of foregoing process. At 2601, the scalar field is created/calculated. At 2602, the marching tetrahedrons algorithm and/or marching cubes algorithm are used to determine the zero crossings of the scalar field and generate a surface mesh. At 2603, "good" vertices are identified based on the relative positioning of the vertices to the range values for a specified number of cameras. The good vertices are retained. At 2604, "bad" vertices are removed based on the relative positioning of the vertices to the range values for the cameras and/or a determination as to whether the vertices fall into the "no data" region of a specified number of cameras (as described above). Finally, at 2605, the mesh is simplified (e.g., the spacing of the vertices is made more uniform as described above) and the 15 process ends.

Vertex Tracking Embodiments

"Vertex tracking" as used herein is the process of tracking zero crossings of a scalar field and generates a surface mesh. 20 the motion of selected points in a captured surfaces over time. In general, one embodiment utilizes two strategies to tracking vertices. The Frame-to-Frame method tracks the points by comparing images taken a very short time apart. The Reference-to-Frame method tracks points by comparing an image to a reference image that could have been captured at a very different time or possibly it was acquired by some other means. Both methods have strengths and weaknesses. Frameto-Frame tracking does not give perfect results. Small tracking errors tend to accumulate over many frames. Points drift away from their nominal locations. In Reference-to-Frame, the subject in the target frame can be distorted from the reference. For example, the mouth in the reference image might be closed and in the target image it might be open. In some cases, it may not be possible to match up the patterns in the two images because it has been distorted beyond recog-

> To address the foregoing limitations, in one embodiment of the invention, a combination of Reference-to-Frame and Frame to Frame techniques are used. A flowchart describing this embodiment is illustrated in FIG. 27. At 2701, Frame-to-Frame tracking is used to find the points within the first and second frames. At 2703, process variable N is set to 3 (i.e., representing frame 3). Then, at 2704, Reference-to-Frame tracking is used to counter the potential drift between the frames. At 2705, the value of N is increased (i.e., representing the Nth frame) and, if another frame exists, determined at 2706, the process returns to 2703 where Frame-to-Frame tracking is employed followed by Reference-to-Frame tracking at 2704.

> In one embodiment, for both Reference-to-Frame and Frame-to-Frame tracking, the camera closest to the normal of the surface is chosen. Correlation is used to find the new x,y locations of the points. See, e.g., Apparatus and Method for PERFORMING MOTION CAPTURE USING A RANDOM PATTERN ON CAP-TURE SURFACES," Ser. No. 11/255,854, Filed Oct. 20, 2005, for a description of correlation techniques that may be employed. The z value is extracted from the reconstructed surface. The correlation technique has a number of parameters that can be adjusted to find as many points as possible. For example, the Frame-to-Frame method might search for the points over a relatively large area and use a large window function for matching points. The Reference-to-Frame method might search a smaller area with a smaller window. However, it is often the case that there is no discernible peak or that there are multiple peaks for a particular set of parameters. The point cannot be tracked with sufficient confidence using these parameters. For this reason, in one embodiment of the inven-

31

tion, multiple correlation passes are performed with different sets of parameters. In passes after the first, the search area can be shrunk by using a least squares estimate of the position of a point based on the positions of nearby points that were successfully tracked in previous passes. Care must be taken when selecting the nearby points. For example, points on the upper lip can be physically close to points on the lower lip in one frame but in later frames they can be separated by a substantial distance. Points on the upper lip are not good predictors of the locations of points on the lower lip. Instead of the spatial distance between points the geodesic distance between points when travel is restricted to be along edges of the mesh is a better basis for the weighting function of the least squares fitting. In the example, the path from the upper 15 lip to the lower lip would go around the corners of the mouth—a much longer distance and hence a greatly reduced influence on the locations of points on the opposite lip.

FIG. 28 provides an overview of the foregoing operations. In 2801, the first set of parameters is chosen. In 2802, an 20 attempt is made to track vertices given a set of parameters. Success is determined using the criteria described above. In 2802, the locations of the vertices that were not successfully tracked are estimated from the positions of neighboring vertices that were successfully tracked. In 2804 and 2805, the set 25 of parameters is updated or the program is terminated. Thus, multiple correlation passes are performed using different sets of parameters.

At times the reconstruction of a surface is imperfect. It can have holes or extraneous bumps. The location of every point is checked by estimating its position from its neighbor's positions. If the tracked location is too different it is suspected that something has gone wrong with either the tracking or with the surface reconstruction. In either case the point is corrected to a best estimate location.

Retrospective Tracking Marker Selection

Many prior art motion capture systems (e.g. the Vicon MX40 motion capture system) utilize markers of one form or another that are attached to the objects whose motion is to be captured. For example, for capturing facial motion one prior art technique is to glue retroreflective markers to the face. Another prior art technique to capture facial motion is to paint dots or lines on the face. Since these markers remain in a fixed position relative to the locations where they are attached to the face, they track the motion of that part of the face as it moves.

Typically, in a production motion capture environment, locations on the face are chosen by the production team where they believe they will need to track the facial motion when they use the captured motion data in the future to drive an animation (e.g. they may place a marker on the eyelid to track the motion of blinking). The problem with this approach is that it often is not possible to determine the ideal location for the markers until after the animation production is in process, which may be months or even years after the motion capture session where the markers were captured. At such time, if the production team determines that one or more markers is in a sub-optimal location (e.g. located at a location on the face where there is a wrinkle that distorts the motion), it is often impractical to set up another motion capture session with the same performer and re-capture the data.

In one embodiment of the invention users specify the 65 points on the capture surfaces that they wish to track after the motion capture data has been captured (i.e. retrospectively

32

relative to the motion capture session, rather than prospectively). Typically, the number of points specified by a user to be tracked for production animation will be far fewer points than the number of vertices of the polygons captured in each frame using the surface capture system of the present embodiment. For example, while over 100,000 vertices may be captured in each frame for a face, typically 1000 tracked vertices or less is sufficient for most production animation applications.

For this example, a user may choose a reference frame, and then select 1000 vertices out of the more than 100,000 vertices on the surface to be tracked. Then, utilizing the vertex tracking techniques described previously and illustrated in FIGS. 27 and 28, those 1000 vertices are tracked from frameto-frame. Then, these 1000 tracked points are used by an animation production team for whatever animation they choose to do. If, at some point during this animation production process, the animation production team determines that they would prefer to have one or more tracked vertices moved to different locations on the face, or to have one or more tracked vertices added or deleted, they can specify the changes, and then using the same vertex tracking techniques, these new vertices will be tracked. In fact, the vertices to be tracked can be changed as many times as is needed. The ability to retrospectively change tracking markers (e.g. vertices) is an enormous improvement over prior approaches where all tracked points must be specified prospectively prior to a motion capture session and can not be changed thereafter.

Embodiments of the invention may include various steps as set forth above. The steps may be embodied in machine-executable instructions which cause a general-purpose or special-purpose processor to perform certain steps. Various elements which are not relevant to the underlying principles of the invention such as computer memory, hard drive, input devices, have been left out of the figures to avoid obscuring the pertinent aspects of the invention.

Alternatively, in one embodiment, the various functional modules illustrated herein and the associated steps may be performed by specific hardware components that contain hardwired logic for performing the steps, such as an application-specific integrated circuit ("ASIC") or by any combination of programmed computer components and custom hardware components.

Elements of the present invention may also be provided as a machine-readable medium for storing the machine-executable instructions. The machine-readable medium may include, but is not limited to, flash memory, optical disks, CD-ROMs, DVD ROMs, RAMs, EPROMs, EEPROMs, magnetic or optical cards, propagation media or other type of machine-readable media suitable for storing electronic instructions. For example, the present invention may be downloaded as a computer program which may be transferred from a remote computer (e.g., a server) to a requesting computer (e.g., a client) by way of data signals embodied in a carrier wave or other propagation medium via a communication link (e.g., a modem or network connection).

Throughout the foregoing description, for the purposes of explanation, numerous specific details were set forth in order to provide a thorough understanding of the present system and method. It will be apparent, however, to one skilled in the art that the system and method may be practiced without some of these specific details. Accordingly, the scope and spirit of the present invention should be judged in terms of the claims which follow.

33

What is claimed is:

- 1. A computer-implemented system for performing motion capture of a subject comprising:
 - a plurality of cameras for capturing a sequence of image frames of the subject over a period of time, each frame 5 having a plurality of vertices defining a captured surface of the subject;
 - a computing system for processing the sequence of image frames, the computing system having a memory for storing program code and a processor for processing the 10 program code to perform the operations of:
 - establishing a reference frame having one or more of the plurality of vertices and specifying a location for each of the vertices;
 - performing frame-to-frame tracking to identify locations 15 of vertices within an N'th frame based on locations of vertices within an (N-1)'th frame or an earlier frame;
 - performing reference-to-frame tracking to identify locations of vertices within the N'th frame based on the locations of vertices in the reference frame to counter 20 potential drift between the frames;
 - storing the locations of vertices for use in subsequent reconstruction of the motion of the subject; and
 - performing the frame-to-frame and reference-to-frame tracking again using a different set of parameters, the 25 parameters defining a search area for the vertices of each frame
 - wherein multiple correlation passes are performed with the different sets of parameters; and
 - wherein for passes after the first, the search area is shrunk 30 by using an estimate of the position of a vertex based on the position of nearby vertices that were successfully tracked in the previous passes.
 - 2. The system as in claim 1 wherein
 - a camera closest to a normal of the surface on which each 35 vertex is located is selected to perform the frame-to-frame and reference-to-frame tracking.
- 3. The system as in claim 1 wherein the frame-to-frame tracking is performed using a relatively larger window for matching vertices and the reference-to-frame tracking is performed using a relatively smaller window for matching vertices.
 - 4. The system as in claim 1 further comprising: estimating the location of vertices not found in each frame N based on known locations of neighboring vertices.
- 5. The system as in claim 1 wherein the computing system includes additional program code executed by the processor to perform the additional operations of: correlating lines or random patterns captured by one of the plurality of cameras with images from other of the plurality of cameras.
 - The system as in claim 5 further comprising: generating range information for each vertex based on the correlation.
- 7. The system as in claim 6 wherein range information from multiple cameras is combined by performing the operations 55 of:
 - treating a 3-dimensional (3D) capture volume of the subject as a scalar field;
 - using a marching cubes or marching tetrahedrons process to locate an isosurface of the scalar field and create a 60 polygon mesh representing the surface of the subject; and

removing false surfaces.

8. The system as in claim **7** wherein a scalar value of each point in the 3D capture volume is computed based on a 65 weighted sum of scalar values from each of the plurality of cameras.

34

- 9. The system as in claim 8 wherein a first weighting component is associated with each camera based on an angle at which the camera is pointed relative to the isosurface normal
- 10. The system as in claim 9 wherein a second weighting component is a function of distance of the vertex from the isosurface.
- 11. The system as in claim 1 wherein the subject is a performer and wherein a random pattern of material is applied to regions of the performer's face to create the vertices to be tracked.
- 12. The system as in claim 11 wherein the material is phosphorescent paint.
 - 13. The system as in claim 11 further comprising:
 - a light source to be strobed on and off in response to control signals from the computer system, the light source charging the random pattern when on; and wherein shutters of the plurality of cameras are strobed synchronously with the strobing of the light source to capture sequences of images of the random pattern ("glow frames") as the performer moves or changes facial expressions during a performance, wherein the shutters of the plurality of cameras are open when the light source is off and the shutters are closed when the light source is on.
 - 14. The system as in claim 13 further comprising:
 - a second plurality of cameras having shutters strobed synchronously with the strobing of the light source to capture images of the performer ("lit frames"), wherein the shutters of the second plurality of cameras are open when the light source is on and the shutters of the second plurality of cameras are closed when the light source is off
- 15. The system as in claim 14 wherein the first plurality of cameras are grayscale cameras and the second plurality of cameras are color cameras.
- **16**. The system as in claim **13** wherein the light source comprises a light emitting diode (LED) array.
- 17. The system as in claim 13 wherein strobing the shutters comprises opening the shutters for a first period of time and closing the shutters for a second period of time, the second period of time being of a different duration than the first period of time.
- **18**. The system as in claim **17** wherein the first period of time is longer than the second period of time.
- 19. The system as in claim 14 wherein the lit frames and glow frames are separated to generate two separate sets of image data.
- 20. The system as in claim 14 wherein cameras capturing the lit frames have a sensitivity which is different from cameras capturing the glow frames.
- 21. The system as in claim 13 wherein the shutters are opened for a first period of time when the light source is on and for a second period of time when the light source is off, wherein the first and second periods of time are unequal.
- 22. The system as in claim 11 wherein applying the random pattern comprises:
 - applying phosphorescent material to a sponge; and
- applying the sponge upon the performer's face.
- 23. The system as in claim 11 wherein applying the random pattern comprises:
 - spraying the random pattern on the performer's face with an airbrush.
- 24. The system as in claim 11 wherein applying the random pattern comprises:
 - applying paint to the performer's face through a stencil.

35

25. The system as in claim 11 wherein the material is phosphorescent paint and wherein applying the random pattern comprises flicking a wire brush containing the phosphorescent paint such that droplets of phosphorescent paint are splattered onto the performer's face.

36

26. The system as in claim 1 wherein the estimate comprises a least squares estimate.

* * * * *

Exhibit 7

United States of America United States Patent and Trademark Office

MOVA

Reg. No. 3,843,152 MOVA, LLC (CALIFORNIA LIMITED LIABILITY COMPANY)

Registered Aug. 31, 2010 PALO ALTO, CA 94301

Int. Cl.: 42 FOR: RENTAL OF COMPUTER HARDWARE AND SOFTWARE FOR USE IN THE FIELD

OF ENTERTAINMENT, IN CLASS 42 (U.S. CLS. 100 AND 101).

SERVICE MARK FIRST USE 9-1-2009; IN COMMERCE 9-1-2009.

PRINCIPAL REGISTER THE MARK CONSISTS OF STANDARD CHARACTERS WITHOUT CLAIM TO ANY PAR-

TICULAR FONT, STYLE, SIZE, OR COLOR.

THE FOREIGN WORDING IN THE MARK TRANSLATES INTO ENGLISH AS IT MOVES.

SN 78-599,227, FILED 3-31-2005.

LANA PHAM, EXAMINING ATTORNEY

Director of the United States Patent and Trademark Office

Exhibit 8

Int. Cl.: 41

Prior U.S. Cls.: 100, 101, and 107

Reg. No. 3,628,974

United States Patent and Trademark Office

Registered May 26, 2009

SERVICE MARK PRINCIPAL REGISTER

CONTOUR

MOVA, LLC (CALIFORNIA LIMITED LIABILITY COMPANY) 181 LYTTON STREET PALO ALTO, CA 94301

FOR: VISUAL EFFECTS AND MOTION PICTURE PRODUCTION SERVICES, ALL IN THE FIELD OF ENTERTAINMENT; ENTERTAINMENT SERVICES, NAMELY, SPECIAL EFFECTS, VISUAL EFFECTS AND ANIMATION SERVICES FEATURING MOTION CAPTURE FOR TRANSLATING MOVEMENT OF A REAL SUBJECT AND MAPPING SUCH MOVEMENT ONTO A 3-DIMENSIONAL COMPUTERGENERATED MODEL OR AS A COMPUTER-GENERATED

ERATED SUBJECT, IN CLASS 41 (U.S. CLS. 100, 101 AND 107).

FIRST USE 8-1-2006; IN COMMERCE 7-25-2007.

THE MARK CONSISTS OF STANDARD CHARACTERS WITHOUT CLAIM TO ANY PARTICULAR FONT, STYLE, SIZE, OR COLOR.

SN 78-981,021, FILED 5-4-2006.

DANIEL CAPSHAW, EXAMINING ATTORNEY

ed 07/17/17 Page 1 of 1 Case 3:17-cv-04006

The JS-CAND 44 civil cover sheet and the information contained herein neither replace nor supplement the filing and service of pleadings or other papers as required by law, except as provided by local rules of court. This form, approved in its original form by the Judicial Conference of the United States in September 1974, is required for the Clerk of Court to initiate the civil docket sheet. (SEE INSTRUCTIONS ON NEXT PAGE OF THIS FORM.)

I. (a) PLAINTIFFS

REARDEN LLC and REARDEN MOVA LLC,

(b) County of Residence of First Listed Plaintiff San Francisco, CA (EXCEPT IN U.S. PLAINTIFF CASES)

(c) Attorneys (Firm Name, Address, and Telephone Number)

DEFENDANTS

THE WALT DISNEY COMPANY, WALT DISNEY MOTION PICTURES GROUP, INC., BUENA VISTA HOME ENTERTAINMENT, INC., MARVEL STUDIOS, LLC, and MANDEVILLE FILMS, INC.,

County of Residence of First Listed Defendant (IN U.S. PLAINTIFF CASES ONLY)

IN LAND CONDEMNATION CASES, USE THE LOCATION OF THE TRACT OF LAND INVOLVED.

Attorneys (If Known)

HAGENS BERMAN SO Berkeley, CA 94710, Tel	DBOL SHAPIRO LLP, 71: lephone: (510) 725-3000	5 Hearst Ave., St	te. 202				
II. BASIS OF JURISDICTION (Place an "X" in One Box Only) 1 U.S. Government Plaintiff X 3 Federal Question (U.S. Government Not a Party)				III. CITIZENSHIP OF PRINCE (For Diversity Cases Only) PTF Citizen of This State		IPAL PARTIES (Place an "X" in One Box for Plaintiff and One Box for Defendant) DEF PTF DEF 1 Incorporated or Principal Place 4 4 4	
2 U.S. Government Defendant 4 Diversity (Indicate Citizenship of Parties in Item III)					3	2 Incorporated and Prin of Business In Anoth 3 Foreign Nation	ncipal Place 5
IV. NATURE OF SU	UIT (Place an "X" in One Box	Only)					
CONTRACT	TORTS			FORFEITURE/PENALTY		BANKRUPTCY	OTHER STATUTES
110 Insurance 120 Marine 130 Miller Act 140 Negotiable Instrument	PERSONAL INJURY 310 Airplane 315 Airplane Product Liability 320 Assault, Libel & Slander	PERSONAL INJURY 365 Personal Injury – Product Liability 367 Health Care/		625 Drug Related Seiz Property 21 USC 690 Other		422 Appeal 28 USC § 158 423 Withdrawal 28 USC § 157 PROPERTY RIGHTS	375 False Claims Act 376 Qui Tam (31 USC § 3729(a)) 400 State Reapportionment
150 Recovery of Overpayment Of Veteran's Benefits 151 Medicare Act 152 Recovery of Defaulted Student Loans (Excludes Veterans) 153 Recovery of	330 Federal Employers' Liability 340 Marine 345 Marine Product Liability 350 Motor Vehicle 355 Motor Vehicle Product Liability	Pharmaceutics Injury Product 368 Asbestos Perss Product Liabil PERSONAL PRO 370 Other Fraud 371 Truth in Lendi 380 Other Persona	et Liability sonal Injury solity COPERTY ding al Property mage Product	710 Fair Labor Standa 720 Labor/Manageme Relations 740 Railway Labor Ac 751 Family and Medic Leave Act 790 Other Labor Litig	nt et eal ation	X 820 Copyrights 830 Patent 835 Patent—Abbreviated New Drug Application 840 Trademark SOCIAL SECURITY 861 HIA (1395ff)	410 Antitrust 430 Banks and Banking 450 Commerce 460 Deportation 470 Racketeer Influenced & Corrupt Organizations 480 Consumer Credit 490 Cable/Sat TV 850 Securities/Commodities/ Exchange 890 Other Statutory Actions 891 Agricultural Acts
Overpayment of Veteran's Benefits 160 Stockholders' Suits 190 Other Contract 195 Contract Product Liability	360 Other Personal Injury 362 Personal Injury -Medical Malpractice CIVIL RIGHTS 440 Other Civil Rights	Damage 385 Property Dama Liability PRISONER PET		791 Employee Retirem Income Security A IMMIGRATION 462 Naturalization Application	Act	862 Black Lung (923) 863 DIWC/DIWW (405(g)) 864 SSID Title XVI 865 RSI (405(g))	
196 Franchise REAL PROPERTY 210 Land Condemnation 220 Foreclosure 230 Rent Lease & Ejectment 240 Torts to Land 245 Tort Product Liability 290 All Other Real Property	440 Other CVII Rights 441 Voting 442 Employment 443 Housing/ Accommodations 445 Amer. w/Disabilities— Employment 446 Amer. w/Disabilities—Other 448 Education	HABEAS CORPUS 463 Alien Detainee 510 Motions to Vacate Sentence 530 General 535 Death Penalty OTHER 540 Mandamus & Other 550 Civil Rights 555 Prison Condition 560 Civil Detainee— Conditions of Confinement		465 Other Immigration Actions		870 Taxes (U.S. Plaintiff or Defendant) 871 IRS—Third Party 26 USC § 7609	895 Freedom of Information Act 896 Arbitration 899 Administrative Procedure Act/Review or Appeal of Agency Decision 950 Constitutionality of State Statutes
V. ORIGIN (Place an X 1 Original 2 Proceeding	Removed from 3	Remanded from Appellate Court	4 Reinst Reope	ated or 5 Transfe aned Anothe		n 6 Multidistrict (specify) Litigation–Tran	8 Multidistrict sfer Litigation–Direct File
ACTION 28 Bri	e the U.S. Civil Statute under U.S.C. § 1400(a) and 1391 (b), (c) ef description of cause: opyright infringement cla) and (d)	(Do not ci	ite jurisdictional statutes	unless di		
VII. REQUESTED II COMPLAINT:	DEM	ND \$ CHECK YES only if demanded in complaint: JURY DEMAND: X Yes No					
VIII. RELATED CAS IF ANY (See instru	TODGE IN	istrict Judge Jo	n S. Tiga	ar DOCKET NU	JMBER	Case No. 15-cv-0079	7

(Place an "X" in One Box Only)

DIVISIONAL ASSIGNMENT (Civil Local Rule 3-2)

EUREKA-MCKINLEYVILLE

SAN JOSE

× SAN FRANCISCO/OAKLAND